APS360 Artificial Intelligence Fundamentals

Lisa Zhang

Lecture 1; May 6, 2019

Agenda

First Hour:

- Introduction
- Motivation
- Logistics

Second Hour:

- Biological and artificial neurons
- Building an artificial Pigeon

Welcome to APS360!

Introduction

- Instructor: Lisa Zhang
- Email: lczhang@cs.toronto.edu
 - Please prefix email subject with 'APS360'
- Office hours: Thursday 3pm-4pm and by appointment

About your instructor

Before I started teaching, I was...

- a masters student doing research in Machine Learning
- a senior data scientist at an advertising technology company
- a startup founder of a data visualization company
- a software developer intern in various Silicon Valley companies, e.g. Facebook, ContextLogic (Wish)

I studied...

- machine learning at UofT (supervised by Prof. Richard Zemel, Prof. Raquel Urtasun)
- pure math at UWaterloo

Ask me about anything outside of class, or empty office hours!

About you

Introduce yourself to the people sitting in your pod:

- What is your name?
- What is your area of study?
- Why are you here?

Survey: demographics

Year of study:

- 40% 2rd years
- ► 40% 3rd years
- 10% 4th years
- ▶ 10% other

Area of study:

- Engineering Science
- Electiacal & Computer Engineering
- Mechanical engineering
- Others

Why did you take this course?

- Al Minor (50%)
- AI Certificate (30%)
- Practical Skills (65%)
- For Fun (50%)

Previous ML and Neural Networks courses?

Almost everyone have not

Summer Activities

- ► Taking another course ~60%
- Working full time ~70%

Interest in Machine Learning

- ► Application to another field: ~70%
- Becoming a data scientist: ~40%
- ► Machine Learning Research: ~30%

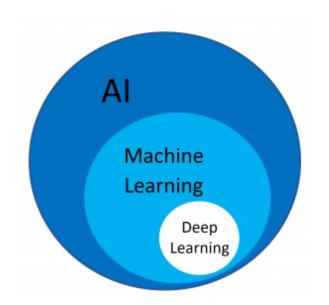
Programming Proficiency

- Python Experience: ~70%
- Jupyter Notebooks: ~30%
- ► PyTorch: ~2%

I will assume that you have Python experience. (e.g. loops, conditionals, functions, etc)

What do you know about AI?

What is the difference between:


- Artificial Intelligence,
- Machine Learning, and
- Deep Learning?

Artificial Intelligence: Create intelligent machines that work and act like humans.

Machine Learning: Find an algorithm that automatically learns from example data.

Deep Learning: Using deep neural networks to automatically learn from example data.

Relationship

ARTIFICIAL INTELLIGENCE

Artificial Intelligence captures the imagination of the world.

MACHINE LEARNING

Machine learning starts to gain traction.

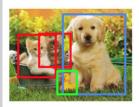
DEEP LEARNING

Deep learning catapults the industry.

Edward Shortliffe writes MYCIN, an Expert or Rule based System, to classify blood disease 1970s ImageNet Feeds Deep Learning 2009

Turing 1950	fest Devised	ELIZA 1964 - 1966			IBM Deep Blue def Master Garry Kasp 1996		AlphaGo defeats Go champion Lee Sedol 2016	
1950s	1960s	1970s	1980s	1990s	2000s	2010s	1	

Why machine learning?


For many problems, it is difficult to program the correct behavior.

Gary Chavez added a photo you might ... be in.

about a minute ago · 👪

CAT, DOG, DUCK

(ALREADY FAMILIAR EXAMPLE)

I'M GOING TO THE THEATER = ICH GEHE INS THEATER I'M GOING TO THE CINEMA HIGH ICH GEHE INS KINO

Types of Machine Learning Problems

- Supervised Learning
 - Regression
 - Classification
- Unsupervised Learning
- Reinforcement Learning
- ► (...and more)

Supervised Learning: learning a function that maps an input to an output based on example input-output pairs

Examples:

- Age prediction given a headshot:
 - Input: headshot image
 - Output: person's age
- Sentiment classification given a tweet:
 - Input: tweet text
 - Output: whether the tweet is happy or sad

Supervised Learning Task

- Regression: when the output is a continuous value
 - e.g. age prediction
- Classification: when the output is a categorical value
 - e.g. sentiment classification

Unsupervised Learning

Unsupervised Learning: learning the structure of some (unlabelled) data

Example:

- clustering
- generating new images
- style transfer

Reinforcement Learning

Reinforcement Learning: learning what actions to take to optimize long-term reward.

Example:

playing a video game

Deep Learning Caveats: Interpretability

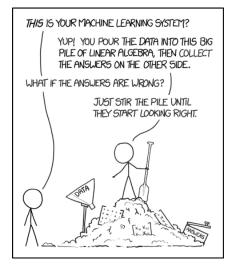
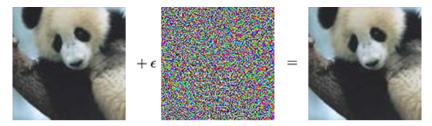
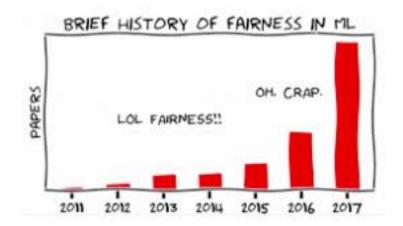



Figure 1: from https://xkcd.com/1838/


Deep Learning Caveats: Adversarial Examples

"panda" 57.7% confidence

"gibbon" 99.3% confidence

Deep Learning Caveats: Fairness

Example

The U.S. military built an Al tool to find suitable combat personnel but had to shut it down because it was discriminating against women

News

Course Coverage

- We will focus exclusively on neural networks and deep learning.
- Mostly supervised learning
- Some unsupervised learning
- A tiny bit of reinforcement learning

Course Philosophy

- Top-down approach
 - Learn by doing
 - Explains the entire system first
 - Details in future courses
- We will introduce very little math
- Focus on implementation and software skills
- Focus on communication skills

Course Website

https://www.cs.toronto.edu/~lczhang/360/

Course Components

- Lectures: Monday (2 hr), Thursday (1 hrs)
- Labs: Thursday (1 hr), lead by a TA, in the first half of the course
- Project: Implementation project in the second half of the course
- ► Notes/Readings: Notes and readings are posted weekly.
- Any material covered in lectures / tutorials / readings is fair game for the midterm, and final term test.

Teaching Assistants (in alphabetical order)

All your TAs are machine learning researchers.

- Andrew Jung
- Huan Ling
- Farzaneh Mahdisoltani
- Jake Snell

Grade Breakdown

- ▶ Labs: 15%
- Project: 30%
- Midterm: 20%
- ► Final Term Test: 35%

Labs

- One per week in the first half of the course
- Done individually must be your own work
- You will be given lab time to complete the lab work
- Typically, you can submit your lab by the following Weds 9pm

Late Policy:

- Penalty-free grace period of 1 hours past the deadline
- Penalty of 20% between 1 hour and 24 hours past the deadline
- ► No assignments are accepted after the 24 hour deadline
- The submission time is based on Quercus clock, and the late policy is strict

If you have accessibility concerns, speak to me as early as possible.

Software

- Python 3.6
- NumPy
- PyTorch
- Jupyter Notebooks

All lab handouts will be Jupyter notebooks

All assignments are tested on the Google Colab environment.

Work in a group of 3 to build a useful machine learning system.

Everyone must contribute to all parts of the project to earn a grade.

- Project Proposal: 3%
- Progress Meeting with TA Mentor: 3%
- Progress Report: 4%
- ▶ **Presentation**: 10%
- ▶ **Project Repository**: 10%

Midterm

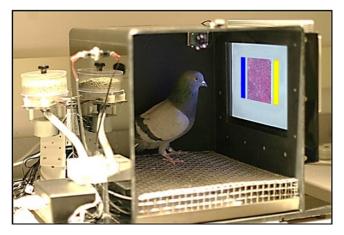
- June 20th, 6pm-8pm
- Length: 110 minutes
- Location: TBD
- No aids permitted

Final Term Test

- August 1th, 6pm-8:30pm
- Length: 150 minutes
- Location: TBD
- No aids permitted

Schedule (Before Reading Week)

Week	Content	Lab
1	Introduction, Basic Neural Networks	PyTorch
2	Neural Network Training	Cats vs Dogs
3	Multi-class Classification	Data Collection
4	Convolutional Neural Networks	Gesture Recognition
5	Deconvolutions and Autoencoders	Autoencoder
6	Language Models and RNNs	Spam Detection
7	Midterm Week	N/A


Schedule (After Reading Week)

Week	Content	
8	Text Generation	
9	Generative Adversarial Networks	
10	Reinforcement Learning	
11	Ethics in AI	
12	Exam	
13	(Project)	
14	Presentations	

- I am away May 14 26
- ► Your TA Jake will be covering the lectures in my absense

Questions?

Using Pigeons to Detect Cancer

A new study suggests that the common pigeon can reliably distinguish between benign versus malignant tumors and, in doing so, could help researchers develop better cancer screening technologies.

https://www.scientificamerican.com/article/using-pigeons-to-diagnose-cancer/

https://www.youtube.com/watch?v=flzGjnJLyS0

- 1. Show an image of a magnified biopsy to a pigeon
- 2. Pigeon pecks at one of two answer buttons (cancer or not-cancer)
- 3. If pigeon picks correctly, reward pigeon with a tasty food pellet

Training an Artificial Neural Network

We need to answer similar questions:

- 1. How will we reward the pigeon/network?
- 2. How do we train the pigeon/network quickly and efficiently?
- 3. How do we know the pigeon/network didn't just memorize the photos?
- 4. Are there ethical issues in trusting a pigeon/network to detect cancer?

How do pigeons work?

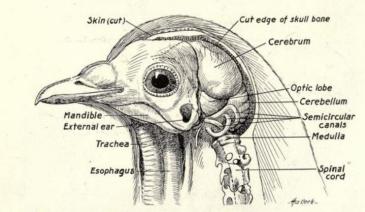
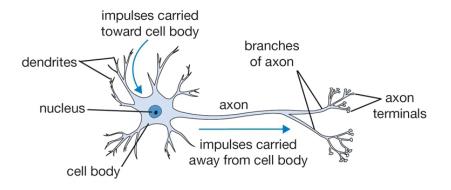
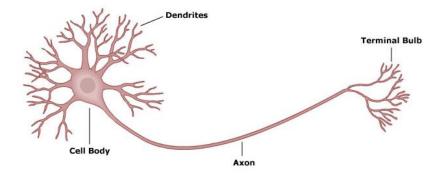
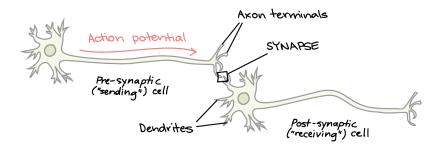




Fig. 167.--Lateral view of the head of a pigeon showing the brain, external auditory opening and semicircular canals.

Neuron


Neuron (Simplified)

Neuron Anatomy

- The dendrites, which are connected to other cells that provides information.
- The cell body, which consolidates information from the dendrites.
- The axon, which is an extension from the cell body that passes information to other cells.
- The synapse, which is the area where the axon of one neuron and the dendrite of another connect.

Synapse

Synapse

- Small voltage difference between inside and outside of cell
- When a neuron receives "information" in its dendrites, the voltage difference along that part of the cell lowers.
- If the total activity in a neuron's dendrites lowers the voltage difference enough, the entire cell *depolarizes* and the cell **fires**.
- The voltage signal spread along the axon and to the synapse, then to the next cells.

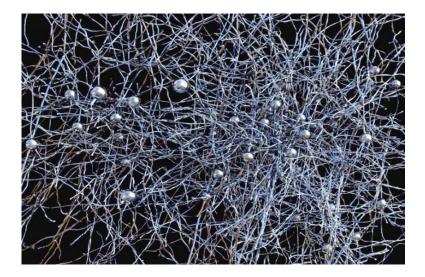
What does it mean when a particular neuron fires?

Neuron can fire in response to...

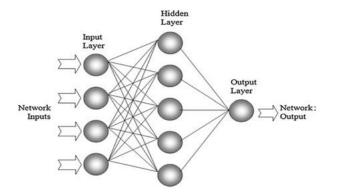
- retinal cells
- certain edges, lines, angles, movements
- hands and faces (in primates)
- specific people like Jennifer Aniston (in humans)

Grandmother Cell

- A neuron that represents a complex but specific concept or object
- Its existence is contested


Distributed encoding

The idea that neuron firing patterns encode information only in a **distributed** fashion


Artificial Pigeon Brain

- Start with an **output** "grandmother cell" that represent the concept that we want to predict.
- > Also, start with input neurons that activate with each pixel
- Connect input to outputs

Biological Neuron Connectivity

Artificial Neuron Connectivity

- add a hidden layer that don't have specific meaning
- fully-connected, feed-forward network

Modelling Individual Neurons

- $x_1, x_2, ... =$ the neurons **activation** of input layer neurons
- h_1 = the neuron activation of a hidden layer neuron
- y = the neuron activation of the output layer neuron

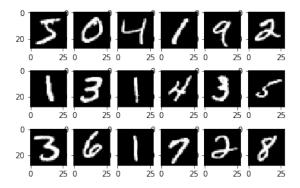
$$h_1 = \sigma(b_1 + \sum_i w_{1,i} x_i)$$

- w_{1,i} = a weight summarizing the connectivity of neurons x_i and h₁
- ▶ b₁ = a bias summarizing the activation requirement of the neuron h₁

Linear Algebra

- x input layer activations
- h hidden layer activations
- y output unit

$$\mathbf{h} = \sigma(\mathbf{b} + \mathbf{W}\mathbf{x})$$


- W = a matrix of weights
- b = a vector of **biases**

But what do the neurons mean?

- Use x_i to encode the input
 - e.g. biopsy image
 - like the neurons that are connected to the receptors in the eye
- Use y to encode the output (of a binary classification problem)
 - e.g. cancer vs. not cancer

Start with a problem (task)

- Input: An 28x28 pixel image
- Output: Whether the digit is a **small** digit (0, 1, or 2)
 - output=1 means that the digit is small
 - output=0 means that the digit is not small

Let's write some code!

Next Class:

We'll build an artificial pigeon together