
Lab 3

Part A. Data Collection [5 pt]

Due May 24th 11:59pm

So far, we have worked with data sets that have been collected, cleaned, and curated by machine learning
researchers and practitioners. Datasets like MNIST and CIFAR are often used as toy examples, both by
students and by researchers testing a new machine learning model.

In the real world, getting a clean data set is never that easy. Over half the battle of applying machine learning
is finding, gathering, cleaning, and formatting your data set.

The purpose of this lab is to help you gain experience gathering your own data set, and understand the
challenges involved in the data cleaning process.

American Sign Language

American Sign Language (ASL) is a complete, complex language that employs signs made by moving the
hands combined with facial expressions and postures of the body. It is the primary language of many
North Americans who are deaf and is one of several communication options used by people who are deaf or
hard-of-hearing.

The hand gestures representing English alphabets are shown below. This lab focuses on classifying a subset
of these hand gesture images using convolutional neural networks. Specifically, given an image of a hand
showing one of the letters A-I, we want to detect which letter is being represented.

Figure 1: from https://qualityansweringservice.com/wp-content/uploads/2010/01/images_abc1280x960.png

1

Generating Data

We will produce the images required for this lab by ourselves. Each student will collect, clean and submit
three images each of Americal Sign Language gestures for letters A - I (total of 27 images)

Steps involved in data collection

1. Familiarize yourself with American Sign Language gestures for letters from A - I (9 letters).
2. Ask your friend to take three pictures at slightly different orientation for each letter gesture using your

mobile phone.
• Ensure adequate lighting while you are capturing the images.
• Use your right hand to create gestures (for consistency).
• Keep your right hand fairly apart from your body and any other obstructions.
• Avoid having shadows on parts of your hand.

3. Transfer the images to your laptop for cleaning.

Cleaning Data

To make the task simpler, we will standardize the images. We will make sure that all our images are of the
same size (224 x 224 pixels RGB), and have the hand in the center of the cropped regions.

You may use the following applications to crop and resize your images:

Mac

• Use Preview:
– Hold down CMD + Shift will keep square aspect ratio while selecting the hand area.
– Resize to 224x224 pixels.

Windows 10

• Use Photos app to edit and crop the image and keep the aspect ratio as Square
• Use Paint to resize the image to the final image size of 224x224 pixels

Linux

• You can use GIMP, imagemagick, or other tools of your choosing.

You may also use online tools such as http://picresize.com

All the above steps are illustrative only. You need not follow these steps but following these will ensure that
you churn out good quality dataset. You will be judged based on the quality of the images alone.

Accepted Images

Images will be accepted and graded based on below criteria

1. Final image should be size 224x224 pixels (RGB)
2. File format should be a .jpg file
3. Hand should be approximately centered on the frame
4. The hand should not be obscured
5. The hand should not be cut off
6. Follows the ASL gestures posted earlier

Submission

Submit a zip file containing your images by midnight May 24th.

2

Figure 2: Acceptable Images (left) and Unacceptable Images (right)

3

1. Individual image file names should follow the convention of student-number_Alphabet_file-no.jpg
(e.g. 100343434_A_1.jpg).

2. Zip all the images together and name it with the following convention: last-name_student-number.zip
(e.g. last-name_100343434.zip).

3. Upload the zipped folder on Quercus (Lab 3a).

We will be anonymizing and combining the images that everyone submits. We will announce when the
combined data set will be available for download.

Part B. Building a CNN [50 pt]

Due Wednesday June 5, 9pm

For this lab, we are not going to give you any starter code. You will be writing a convolutional neural network
from scratch. You are welcome to use any code from previous labs, lectures and tutorials. You should also
write your own code.

You may use the PyTorch documentation freely. You might find documentations and online tutorials helpful.
However, all code that you submit must be your own.

Make sure that your code is vectorized, and does not contain obvious inefficiencies (for example, unecessary
for loops, or unnecessary calls to unsqueeze()). Ensure enough comments are included in the code so that
your TA can understand what you are doing. It is your responsibility to show that you understand what you
write.

This is much more challenging and time-consuming than the previous labs. Make sure that you
give yourself plenty of time by starting early. In particular, the earlier questions can be completed even if you
do not yet have the full data set.

Submission

Submit a PDF file containing all your code, outputs, and write-up from parts 1-5 on Quercus. You can
produce a PDF of your Google Colab file by going to File > Print and then save as PDF. The Colab
instructions has more information.

Do not submit any other files produced by your code.

Include a link to your colab file in your submission.

1. Model Building and Sanity Checking [15 pt]

Part (a) Convolutional Network - 5 pt

Build a convolutional neural network model that takes the (224x224 RGB) image as input, and predicts the
letter. Your model should be a subclass of nn.Module. Explain your choice of neural network architecture: how
many layers did you choose? What types of layers did you use? Were they fully-connected or convolutional?
What about other decisions like pooling layers, activation functions, number of channels / hidden units.

Part (b) Training Code - 5 pt

Write code to train your neural network given some training data. Your training code should make it easy to
tweak hyperparameters. Make sure that you are checkpointing your models from time to time (the frequency
is up to you). Explain your choice of loss function and optimizer.

4

Part (c) Overfit to a Small Dataset - 5 pt

One way to sanity check our neural network model and training code is to check whether the model is capable
of overfitting a small dataset. Construct a small dataset (e.g. 1-2 image per class). Then show that your
model and training code is capable of overfitting on that small dataset. You should be able to obtain a 100%
training accuracy on that small dataset relatively quickly.

If your model cannot overfit the small dataset quickly, then there is a bug in either your model code and/or
your training code. Fix the issues before you proceed to the next step.

2. Data Loading and Splitting [5 pt]

Download the anonymized data collected by you and your classmates. Split the data into training, validation,
and test sets.

Note: Data splitting is not as trivial in this lab. We want our test set to closely resemble the setting in which
our model will be used. In particular, our test set should contain hands that are never seen in training!

Explain how you split the data, either by describing what you did, or by showing the code that you used.
Justify your choice of splitting strategy. How many training, validation, and test images do you have?

For loading the data, you can use plt.imread as in Lab 1, or any other method that you choose. You may find
torchvision.datasets.ImageFolder helpful. (see https://pytorch.org/docs/master/torchvision/datasets.html#imagefolder
) For this portion only, you are free to look up tutorials or other code on the internet to help you.

3. Training [5 pt]

Train your first network on your training set. Plot the training curve, and include your plot in your writeup.

Make sure that you are checkpointing frequently!

4. Hyperparameter Search [8 pt]

Part (a) - 1 pt

List 3 hyperparameters that you think are most worth tuning.

Part (b) - 4 pt

Tune the hyperparameters you listed in Part (a), trying as many values as you need to until you feel satisfied
that you are getting a good model. Plot the training curve of at least 4 different hyperparameter settings.

Part (c) - 1 pt

Choose the best model out of all the ones that you have trained. Justify your choice.

Part (d) - 2 pt

Report the test accuracy of your best model. You should only do this step once.

5

5. Transfer Learning [17 pt]

For many image classification tasks, it is generally not a good idea to train a very large deep neural network
model from scratch due to the enormous compute requirements and lack of sufficient amounts of training
data.

One of the better options is to try using an existing model that performs a similar task to the one you need
to solve. This method of utilizing a pre-trained network for other similar tasks is broadly termed Transfer
Learning. In this assignment, we will use Transfer Learning to extract features from the hand gesture
images. Then, train a smaller network to use these features as input and classify the hand gestures.

As you have learned from the CNN lecture, convolution layers extract various features from the images which
get utilized by the fully connected layers for correct classification. AlexNet architecture played a pivotal
role in establishing Deep Neural Nets as a go-to tool for image classification problems and we will use an
ImageNet pre-trained AlexNet model to extract features in this assignment.

AlexNet Paper

Part (a) - 5 pt

Here is the code to load the AlexNet network, with pretrained weights. When you first run the code, PyTorch
will download the pretrained weights from the internet.

import torchvision.models
alexnet = torchvision.models.alexnet(pretrained=True)

The alexnet model is split up into two components: alexnet.features and alexnet.classifier. The
first neural network component, alexnet.features, is used to computed convolutional features, which is
taken as input in alexnet.classifier.

The neural network alexnet.features expects an image tensor of shape Nx3x224x224 as inputs and it will
output a tensor of shape Nx256x6x6 . (N = batch size).

Compute the AlexNet features for each of your training, validation, and test data. Here is an example code
snippet showing how you can compute the AlexNet features for some images (your actual code might be
different):

img = ... a PyTorch tensor with shape [N,3,224,224] containing hand images ...
features = alexnet.features(img)

Save the computed features. You will be using these features as input to your neural network in Part
(b), and you do not want to re-compute the features every time. Instead, run alexnet.features once for
each image, and save the result.

Part (b) - 5 pt

Build a convolutional neural network model that takes as input these AlexNet features, and makes a
prediction. Your model should be a subclass of nn.Module.

Explain your choice of neural network architecture: how many layers did you choose? What types of layers
did you use: fully-connected or convolutional? What about other decisions like pooling layers, activation
functions, number of channels / hidden units in each layer?

Here is an example of how your model may be called:

features = ... load precomputed alexnet.features(img) ...
output = model(features)
prob = F.softmax(output)

6

https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks

Part (c) - 5 pt

Train your new network, including any hyperparameter tuning. Plot and submit the training curve of your
best model only.

Part (d) - 2 pt

Report the test accuracy of your best model. How does the test accuracy compare to part 4(d)?

7

	Lab 3
	Part A. Data Collection [5 pt]
	American Sign Language
	Generating Data
	Cleaning Data
	Accepted Images
	Submission

	Part B. Building a CNN [50 pt]
	Submission
	1. Model Building and Sanity Checking [15 pt]
	2. Data Loading and Splitting [5 pt]
	3. Training [5 pt]
	4. Hyperparameter Search [8 pt]
	5. Transfer Learning [17 pt]

