CSC338: Nonlinear Equations

- 1. True or False: If an iterative method for solving a nonlinear equation gains more than one bit of accuracy per iteration, then it is said to have a superlinear convergence rate.
- 2. Rank the following methods from the slowest convergence rate to the fastest convergence rate:
 - Bisection method
 - Newton's method
 - Secant method
- 3. If the bisection method for finding a zero of a function f starts with an initial bracket of length 1, what is the length of the interval containing the root after six iterations?
- 4. Consider the nonlinear equation $f(x) = x^2 x = 0$. With $x_0 = 1$ as a starting point, what is the value of x_1 if we use Newton's method to solve this problem?

5. Consider the nonlinear equation $f(x) = x^2 - x = 0$. With $x_0 = 1$ and $x_1 = 2$ as starting points, what is the value of x_2 if we use the secant method to solve this problem?

- 6. What is the convergence rate of an iterative scheme if the magnitudes of the errors at successive iterations are: $e_0 = 10^{-2}$, $e_1 = 10^{-3}$, $e_2 = 10^{-4}$, $e_3 = 10^{-5}$, ...
- 7. What is the convergence rate of an iterative scheme if the magnitudes of the errors at successive iterations are: $e_0 = 0.022$, $e_1 = 0.00031$, $e_2 = 0.000023$, $e_3 = 0.0000019$, ...
- 8. What is the convergence rate of an iterative scheme if the magnitudes of the errors at successive iterations are: $e_0 = 0.022$, $e_1 = 0.0031$, $e_2 = 0.000023$, $e_3 = 0.000000019$, ...