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About these slides

These slides are meant to be presentation aid, not a source of
information.

Please use these slides in conjunction with the notes and the slides
that comes with the textbook.



Unconstrainted Optimization

Find a local minimum of f : IR → IR

Approach: Golden Section Search

If f is unimodal on [a, b] then we can iteratively shrink the interval
in which the minima x? lies in



Unconstrainted Optimization

Find a local minimum of f : IR → IR

Approach: Newton’s Method

Approximate f (x) using a quadratic function, and find a critical
point of the approximation.



Today

Find a local minimum of f : IRn → IR

We’ll talk about:

I Newton’s Method
I Gradient Descent
I Reading Contour Plots



Newton’s Method for f : IRn → IR

When f : IR → IR, we have the Taylor Series Expansion:

The result extends to f : IRn → IR



Newton’s Method Idea

In each iteration, we have an estimate xk of a minimum of f .

So we approximate f(x) with



Newton’s Method Update Rule

One major disadvantage of Newton’s Method is that computing the
Hessian Hf (x) is very expensive! (Recall Hf (x) ∈ IRn×n)



Newton’s Method Example

We wish to find a local minimum of
f (x) = x4

1 + x2
1 x2 + x2

1 + 2x2
2 + x2, starting with x0 =

[
1
1

]
.

First, compute ∇xf (x) and Hf (x)

∇xf (x) =
[
4x3

1 + 2x1x2 + 2x1
x2

1 + 4x2 + 1

]

Hf (x) =
[
12x1 + 2x2 + 2 2x1

2x1 4

]
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Newton’s Method Example

Plug in x0 =
[
1
1

]
. What are the values of ∇xf (x0) and Hf (x0)?

∇xf (x) =
[
4x3

1 + 2x1x2 + 2x1
x2

1 + 4x2 + 1

]
=

[ ]

Hf (x) =
[
12x1 + 2x2 + 2 2x1

2x1 4

]
=

[ ]



Newton’s Method Example

Plug in x0 =
[
1
1

]
. What are the values of ∇xf (x0) and Hf (x0)?

∇xf (x0) =
[
8
6

]

Hf (x0) =
[
16 2
2 4

]



Newton’s Method Example
We need s0 so that Hf (x0)s0 = −∇xf (x0).

Solve for s0 in:

[
16 2
2 4

]
s0 = −

[
8
6

]

Use Gauss Elimination!

We get

s0 =
[
−2

5
−4

5

]
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Newton’s Method Update

How do we compute x1 given

x0 =
[
1
1

]
s0 =

[
−2

5
−4

5

]
?



Function 3D Plot



Contour Plot



How to read contour plots



Steepest Descent



Steepest Descent / Gradient Descent

Key idea:

I The gradient of a differentiable function points uphill
I The negative gradient of a differentiable function points

downhill



Example: f : IR → IR

Take f (x) = x2



Example: f : IR2 → IR

Take f (x) = x4
1 + x2

1 x2 + x2
1 + 2x2

2 + x2,

At:

x =
[
0
0

]
, ∇xf (x) =

x =
[
1
1

]
, ∇xf (x) =



Contour Plot

Note: The gradient is always perpendicular to the contour!



Why does this work?

Intuition, a function f : IRn → IR locally looks like a plane.

In other words, locally we can approximate f using

It turns out that −∇f (x) is, locally, the direction of the steepest
descent.



Steepest descent

Algorithm to find a minima of f : IRn → IR locally

Start from an initial guess x0 and update:



Steepest descent pros & cons



Steepest descent example

Show slide 29 and 30



Steepest Descent vs Newton’s Method

Steepest Descent:

Newton:



Quasi-Newton Methods

Steepest Descent: xk+1 = xk − αk∇f (xk)

Newton: xk+1 = xk − Hf (xk)−1∇f (xk)

Quasi-Newton:

Where Bk is an approximation of the Hessian matrix.



Homework Grade Prediction Revisited

Recall the problem of predicting a student’s hw3 grade given their
hw1 and hw2 grades.

A =


a(1)

1 a(1)
2

a(2)
1 a(2)

2
...

...
a(73)

1 a(73)
2

 b =


b(1)

1
b(2)

1
...

b(73)
1



Problem: Find x =
[
x1
x2

]
to minimize ||Ax− b||2

We can treat this as a non-linear optimization problem!



Grade Prediction as Non-Linear Optimization

Define

f (x) = ||Ax− b||2
= (Ax− b)T (Ax− b)
=



Computing Gradient
Now, given that

f (x) =
73∑

j=1
(a(j)

1 x1 + a(j)
2 x2 − b(j))2

Let’s compute ∇xf (x):



Gradient Descent

Start with some x0, e.g. x0 =
[
0
0

]
or x0 =

[
0.5
0.5

]
. (Why?)

Then take gradient descent steps:

xk+1 = xk−

until xk+1 is sufficiently close to xk , or until f (xk+1) is sufficiently
close to f (xk)



Why Gradient Descent?

Instead of computing ∇xf (x) exactly, we can estimate the gradient
using a small subset of our data (subset of 73 students)

Gradient descent works for more complicated functions, like neural
networks!


	Steepest Descent

