CSC338. Homework 1

Due Date: Wednesday January 15, 9pm
Please see the guidelines at https://www.cs.toronto.edu/~lczhang/338 /homework.html

What to Hand In

Please hand in 2 files:

e Python File containing all your code, named hwl.py.

e PDF file named hwl_written.pdf containing your solutions to the written parts of the assignment. Your
solution can be hand-written, but must be legible. Graders may deduct marks for illegible or poorly presented
solutions.

If you are using Jupyter Notebook to complete the work, your notebook can be exported as a .py file (File ->
Download As -> Python). Your code will be auto-graded using Python 3.6, so please make sure that your code runs.
There will be a 20% penalty if you need a remark due to small issues that renders your code untestable.

Make sure to remove or comment out all matplotlib or other expensive code before submitting your
code!

Submit the assignment on MarkUs by 9pm on the due date. See the syllabus for the course policy regarding late
assignments. All assignments must be done individually.

import math
import numpy as np

Question 1.

For parts (a) and (b), consider the problem of evaluating the function g(x) = 2% + x — 4. Suppose there is a small
error, h in the value of x.

Part (a) — 6pt

What is the absolute error and relative error in computing ¢g(z)? Implement function and g_abs_err(x, h) and
g_rel_err(x, h) to compute those quantities.

def g_abs_err(x, h):
"""Returns the absolute error of computing g at "z if "z 1is
perturbed by a small value “h°.

mmnn

return None

def g_rel_err(x, h):
"""Returns the relative error of computing g at ‘z if ‘T s
perturbed by a small value “h° .

mmwn

return None

Part (b) — 3pt

Estimate the condition number for the problem. Simplify this answer. For what values of x is this problem
well-conditioned? Include your solution in your PDF file.

Part (c) — 2pt

For parts (c) and (d), consider the problem of finding a root of the function g(x) = x? + x + ¢ by using the Quadratic
Formula and taking the positive squareroot. Suppose there is a small error, h in the value of c.

For what values of ¢ is this problem well-posed? Include your solution in your PDF file.

Part (d) — 6pt

What is the absolute error and relative error in computing g(x)? Implement function and g_root_abs_err(c, h)
and g_root_rel_err(c, h) to compute those quantities.

def g_root_abs_err(c, h):
"""Returns the absolute error of finding the (most) positive root of g when
‘¢’ ts perturbed by a small value “h°.

mmnn

return None

def g_root_rel_err(c, h):
"""Returns the relative error of finding the (most) positive root of g when

‘¢’ ts perturbed by a small value “h°.
mimn

return None

Question 2.

Consider the function, which is also implemented below. You can run the plot_f python function to see what the
graph of f looks like.

f(-’l?) _ z—sin(z)

$3
def f(x):
return (x - math.sin(x)) / math.pow(x, 3)

def plot_fQ):
import matplotlib.pyplot as plt
xs = [x for x in np.arange(-3.0, 3.0, 0.05) if abs(x) > 0.05]
ys = [f(x) for x in xs]
plt.plot(xs, ys, 'bo')

plot_f() # please comment this out before submitting, or your code might be untestable

Part (a) — 2pt

What is £(0.00000001)7 Save the results in the variable q2_est.
Given that f is continuous except at 2z = 0, what should f(0.00000001) be? Save the results in the variable q2_true.

gq2_est = None
gq2_true = None

Part (b) — 2pt

Why does the Python statement compute such inaccurate values of f(0.00000001)? Include your answer in your PDF
File.

Part (c) — 5pt
Define a Python function £2(x) that uses a different algorithm to compute more accurate values of f(z) for 0 <z < 7.
More specifically, the relative error should be no more than 1% for those values of z.

def f2(x):
return None

Question 3. — 4pt

The sine function is given by the infinite series
3 5 7
] J— x x x
sin(z) =2 — 5 + & — G + ...

Compute the absolute forward and backwards error if we approximate the sine function by the first two terms of the
series for elements of the array xs below.

Save your solution in the array q3_forward and q3_backward, so that q3_forward[i] and q3_backward[i] are the
absolute forward and backward errors corresponding to the input xs[i].

You may find the functions math.sin and math.asin helpful. You may assume that the true value of sin(z) can be
computed using the function math.sin.

Update (Jan 9th): If the backward error does not exist, please enter “DNE”.
xs = [0.1, 0.5, 1.0, 3.0]

q3_forward = [None, None, None, None]
q3_backward [None, None, None, Nonel

math.sin(0.2)
math.asin(0.2) # arcsin

	CSC338. Homework 1
	What to Hand In
	Question 1.
	Part (a) – 6pt
	Part (b) – 3pt
	Part (c) – 2pt
	Part (d) – 6pt

	Question 2.
	Part (a) – 2pt
	Part (b) – 2pt
	Part (c) – 5pt

	Question 3. – 4pt

