
Midterm Test — Solutions Winter 2020

Question 1. [8 marks]

Circle either “True” or “False” for each of the below statements.

1. False We need a well-conditioned algorithm in order to obtain an accurate result.

2. False
The truncation error is larger if we use a floating-point system with a smaller
precision.

3. True
In the floating-point system F (β = 2, p = 23, L = −100, U = 100), the
underflow level is less than the machine precision.

4. True Floating-point multiplication is commutative.

5. False
If an n×n matrix A is invertible, then it can be written as a product A = LU
where L is lower-triangular and U is upper-triangular.

6. True
The number of solutions to the system Ax = b where A is n × n can be
determined without knowing the right-hand side vector b.

7. False A 2× 2 matrix A is ill-conditioned if its determinant is small.

8. True
The conditioning of a system Ax = b where A is an m × n matrix with
m > n is worse when the angle between b and span(A) is large.
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Question 2. [5 marks]

Answer the following questions with at most 1-2 sentences.

Part (a) [2 marks]

Recall that a problem is well-posed if a solution exists, the solution is unique, and the solution depends
continuously on the problem data. Why is the continuity condition necessary for a numerical problem that
we wish to solve using a computer?

Solution: Continuity condition is necessary because the problem is usually represented using floating-
point numbers, so the problem representation will not be exact. Only if the problem is continuous will our
computed solution be close to the exact solution.

Grading: One point for mentioning floating-point numbers. One point for detailed explanation about
continuity.

Part (b) [2 marks]

Is it possible for floating-point division to overflow? Justify your answer.

Solution: Yes, by dividing a number with an exponent close to U by a number with an exponent close to
L (or just something negative).

Grading: One point for ”yes”. One point for justification or example.

Part (c) [1 mark]

Show that the pseudo-inverse of an invertible n× n matrix A is A−1.

Solution: A+ = A−1 because

A+ = (ATA)−1AT

A+A = (ATA)−1ATA = I

Grading: No part marks except for very minor typos.
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Question 3. [5 marks]

Consider the floating-point system F (β = 5, p = 3, L = −5, U = 5), where chopping is used for rounding.

Part (a) [1 mark]

What is the representation of the decimal number 12.6 in this system? (What are the values of the mantissa
and exponent?)

Solution: The values of the mantissa is 2.23 and the exponent is 1.

12.6 = 2 · 5 + 2 · 50 + 3 · 5−1

= (2 + 2
1

5
+ 3

1

52
)× 51

Grading: Half point if only exponent the is wrong. Otherwise no part marks.

Part (b) [1 mark]

Perform floating-point addition on these two floating-point values: 4.31 × 53 and 2.44 × 52, where the
mantissa here contains digits in base β = 5.

Solution:

04.31 ×53

+00.244 ×53

=10.104 ×53

=1.01 ×54

Grading: Part mark for minor typos only.

Part (c) [2 marks]

Show that the relative error in the above computation is below εmach. Show all your work.

Solution and Grading:

• one point for computing εmach = β1−3 = 0.04

• one point for computing the relative error 1.01−1.0104
1.0104 = −0.00396
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Question 4. [4 marks]

Perform one step of Gauss Elimination with pivoting on the matrix A′′ to elimiate below the third
diagonal. The first two steps of Gauss Elimination has already been done for you.

Write down the permutation matrix P3, the elementary matrix M3, and the new value A′′′ = M3P3A
′′.

A′′ =


1 2 5 0 7
0 2 0 1 3
0 0 3 0 1
0 0 −4 1 2
0 0 2 1 3


Solution: First, apply the permutation matrix to swap rows 3 and 4.

P3 =


1 0 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 0 1

P3A
′′ =


1 2 5 0 7
0 2 0 1 3
0 0 −4 1 2
0 0 3 0 1
0 0 2 1 3


Now the matrix M3 is below, and when applied the new matrix becomes:

M3 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 3

4 1 0
0 0 1

2 0 1

A′′′ =


1 2 5 0 7
0 2 0 1 3
0 0 −4 1 2
0 0 0 0.75 2.5
0 0 0 1.5 5


Grading:

• one point for P3 (no part marks?)

• one point for M3 (half point for getting the sign right)

• two points for A(′′′)
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Question 5. [6 marks]

Part (a) [3 marks]

Given an n× n non-singular matrix A and a second matrix B, describe an efficient algorithm to compute
A−1B.

• First, compute the LU factorization of PA = LU

• Then, for each column bk of B, compute xk = A−1bk using forward and backward substitution

• The solution matrix hs the columns xk from the previous step

Grading:

• one point: Computes the LU factorization only once,

• one point: Specifies use of forward/backward substitution

• one point: Separating the columns of B, and treating them as problems Ax = b

Part (b) [3 marks]

Perform Cholesky Factorization on this matrix.

A =

1 2 1
2 5 1
1 1 3


Solution:

L =

1 0 0
2 1 0
1 −1 1


Grading: Half point per entry.
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Question 6. [4 marks]

Consider the function f(x) = ||Ax||2, where x is a n× 1 vector, A is an n× n invertible matrix, and f(x)
is a real number representing the 2-norm of the vector Ax. We’ll omit the subscript in || · ||2 to keep the
notation clean, but all norms in this question are 2-norms.

In this question, we will show that the condition number of f is cond(A), so that the relative error∣∣∣f(x+∆x)−f(x)
f(x)

∣∣∣ is bounded above by cond(A) ||∆x||
||x|| .

To that end, let y = Ax so that f(x) = ||y||. Suppose that there is a perturbation ∆x in x. Let
∆y = A(x + ∆x)−Ax

Part (a) [1 mark]

Show that ||∆y|| ≤ ||A||||∆x||, justifying your steps.

Solution: First, ∆y = A(x + ∆x)−Ax = A∆x

So, using the matrix norm property that ||A∆x|| ≤ ||A||||∆x||, we have ||∆y|| = ||A∆x|| ≤ ||A||||∆x||

Part (b) [1 mark]

Show that ||x|| ≤ ||A−1||||y||, justifying your steps.

Solution: Since y = Ax and A is invertible, we can write x = A−1y. Using the matrix norm property
that ||A−1y|| ≤ ||A−1||||y||, we have ||x|| = ||A−1y|| ≤ ||A−1||||y||

Part (c) [2 marks]

Show that ||∆y||
||y|| ≤ cond(A) ||∆x||

||x|| , so that
∣∣∣f(x+∆x)−f(x)

f(x)

∣∣∣ ≤ cond(A) ||∆x||
||x|| .

Solution:

Since ||∆y|| ≤ ||A||||∆x|| and ||x|| ≤ ||A−1||||y||, we have that

||∆y||
||A−1||||y||

≤ ||A||||∆x||
||x||

||∆y||
||y||

≤ ||A||||A−1|| ||∆x||
||x||

||∆y||
||y||

≤ cond(A)
||∆x||
||x||
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