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Question 1. [10 marks]

Circle either “True” or “False” for each of the below statements.

1. True False
You can improve the conditioning of a problem by choosing a better algo-
rithm to solve it.

2. True False
If we use Newton’s method to find the minimum of the function
f(x) = x2 + 3x− 4, the method will converge in exactly one iteration.

3. True False
If a matrix has a very small determinant, then it has a very high condition
number.

4. True False The matrix
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 is orthogonal.

5. True False
The secant method for root-finding typically converges faster than Newton’s
method.

6. True False
Given a system of linear equations, a small residual and a small condition
number guarantees an accurate solution.

7. True False The series 10−2, 10−4, 10−6, 10−8, ... converges quadratically.

8. True False A linear least squares problem always has a solution.

9. True False For an invertible, square matrix A, we have A−1 = A+.

10. True False
Householder Transformation is preferred because it is more numerically sta-
ble than Gauss Elimination.
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Question 2. [16 marks]

Part (a) [2 marks]

What is the (relative) condition number of the problem of evaluating the function f(x) = x2 + 1 at x = 1?

Part (b) [2 marks]

What is the (relative) condition number of the problem of solving for the vector x that satisfies Ax = b,

where A =

[
3 0
0 −0.1

]
and b =

[
0
0

]
? Use the L1 norm (the 1-norm).

Part (c) [2 marks]

What is the condition number of the problem of finding the root of f(x) = x3 − 1?

Part (d) [2 marks]

Consider the problems of minimizing f1(x) = (x− 3)8 and minimizing f2(x) = (x− 2)12. Which of the two
minimization problems has worse conditioning? Briefly (with no more than 10 words) explain why.
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Part (e) [2 marks]

Write down the permutation matrix that would reverse the rows of a 4× 4 matrix.

Part (f) [2 marks]

Write down a 4 × 4 elementary elimination matrix that would perform the operation R4 → R2 + R4 and
leave the other rows unchanged.

Part (g) [4 marks]

What is the normal equation for the least squares problem Ax ≈ b, where A =


0 1
1 0
1 1
1 0

, and b =


1
1
0
1

?

Perform all the computations to set up the normal equation, but do not solve it.
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Question 3. [8 marks]

Consider the following Python code, where A is an n× n matrix, and v is a vector of size n.

import numpy as np

A_inv = np.linalg.inv(A)

A_inv_sq = np.matmul(A_inv, A_inv)

b = np.matmul(A_inv_sq, v)

Part (a) [2 marks]

Write a mathematical expression relating b to A and v.

b =

Part (b) [6 marks]

Describe an algorithm to compute b without inverting any matrices. You do not have to write Python
code. Instead, explain step by step what operations to perform.

Page 5 of 16 cont’d. . .



CSC 338H5S Final Exam APRIL 2019

Question 4. [12 marks]

Part (a) [6 marks]

Consider the floating-point system F (β = 10, p = 4, L = −10, U = 10). Suppose we wish to compute the
average of three numbers x, y, and z. Consider two algorithms:

# Algorithm 1:

avg = (x + y + z) / 3

# Algorithm 2:

avg = x/3 + y/3 + z/3

Which algorithm is preferable? Circle your choice above.

Provide example values for x, y and z, and show that your chosen algorithm provides the correct answer,
whereas the other algorithm provides an incorrect answer or no answer at all.
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Part (b) [6 marks]

Consider the normalized floating-point system F (β = 2, p = 6, L = −100, U = 100), where chopping is
used for rounding. We wish to perform the computation below using the floating-point system.

f(n) = (2n − 10)− ((2n − 5)− 5)

Find one positive integer n such that f(n) evaluates to a nonzero floating-point value. Show the compu-
tation and the results of 2n − 10 and (2n − 5)− 5.
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Question 5. [14 marks]

Suppose you are using Householder transformations to compute the QR factorization of the following
matrix:

A =


2 3 1
2 5 1
2 3 9
2 5 5
3 1 1


Part (a) [2 marks]

How many Householder transformations are required?

Part (b) [4 marks]

Specify the first Householder transformation by finding the vector v describing the transformation.
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Part (c) [6 marks]

Apply the first Householder transformation from Part (b) to the matrix A. Draw a box around your final
result.

Part (d) [2 marks]

What does the first column of A become as a result of applying the second Householder transformation?
(Do not compute the second Householder transformation for the entire matrix.)
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Question 6. [15 marks]

Consider the function f(x) = x2 sin(x). We wish to find a root of f(x).

Part (a) [3 marks]

Notice that f(0.1) = 0.0009983 and f(−0.2) = −0.007947, so we can apply the bisection method beginnig
with the interval [−0.2, 0.1]. If we wish to find an estimate of the true root x∗ accurate within 10−6 (i.e.
|xest − x∗| ≤ 10−6), what is the minimum number of bisection method steps required?

Part (b) [2 marks]

Write out the Newton’s Method iterant for f(x).

xk+1 =

Part (c) [2 marks]

Compute x1 using Newton’s Method assuming x0 = 0.1, accurate to at least 4 significant digits.

x1 =

Part (d) [2 marks]

Based on the above result, do you think that the secant method will converge if we set x0 = 0.1 and
x1 = 0.11? Provide a brief explanation, but do not perform any computations.
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Part (e) [6 marks]

Consider using fixed-point iteration on g(x) = x2 sin(x) + x to find a root of f(x) = x2 sin(x). Will the
iteration converge? If so, what is the convergence rate? Show your work.
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Question 7. [12 marks]

Consider the function f(x) = (x− 2)2(1 + sin(x)). It is unimodal on the interval [−2, 0].

Perform two iterations of Golden Section search, beginning with a = −2 and b = 0. Recall that τ = 0.618.

Part (a) [6 marks]

Perform the first iteration of Golden Section search, beginning with a = −2 and b = 0.

a = −2

f(a) = 1.451

b = 0

f(b) = 4

x1 =

f(x1) =

x2 =

f(x2) =

The minimum is not in the interval:

Reduced interval to search:
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Part (b) [6 marks]

Perform the second iteration of Golden Section search.

a =

f(a) =

b =

f(b) =

x1 =

f(x1) =

x2 =

f(x2) =

The minimum is not in the interval:

Reduced interval to search:
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Question 8. [13 marks]

Consider the function f(x1, x2) = x21 + 2x22 − x1x2 − 3x1 − 9x2 + 3

Part (a) [2 marks]

Compute the gradient of the function.

Part (b) [2 marks]

What is the critical point of this function? You do not need to show your work.

x1 = x2 =

Part (c) [2 marks]

Compute the Hessian of the function at the critical point.

Part (d) [5 marks]

Is the Hessian you found in part (c) positive definite, negative definite, or indefinite? Justify your answer
by attempting to perform Cholesky factorization on the matrix. Show your work.

Part (e) [2 marks]

Characterize the critical point as a maximum, minimum or saddle point. Justify your answer.
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[Use the space below for rough work. This page will not be marked, unless you clearly indicate the part
of your work that you want us to mark.]
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[Use the space below for rough work. This page will not be marked, unless you clearly indicate the part
of your work that you want us to mark.]
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