Lab 8: The Ambiguous Choice Operator

In the past two weeks of lecture, we’ve looked at an implementation of the ambiguous choice operator -<, and some
applications of it. In this lab, you’ll do some more work towards applying the choice operator to interesting problems.

Starter code

e streams.rkt
e amb.rkt
e 1lab8.rkt

Task 1: Making change

Let’s look at one application of choice expressions to solve a famous problem in computer science: finding combinations
of coins whose value equals a given amount.

Your first task here is to complete make-change, which yields combinations of 1’s and 5’s that sum to a given number.
As you might expect, this is a choice function, meaning it returns one choice; the remaining choices are accessible by
calling next:

> (make-change 10)

'(5 5)

> (next)

'"51 111 1)

> (next)
'1111111111)
> (next)

'done

Your next task is to generalize this to a function make-change-gen so that it takes two arguments: a list of coin
values, and a target number.

Note: You might see strange behaviours when calling functions inside an -< expression, where the function also uses
-< to generate choices. The workaround is to

1. First generate the choices (e.g. -< generates the arguments to the function that you would like to call)
2. Call the function.

The strange behaviour occurs when functions used in expressions inside -< uses (fail) to backtrack.
For example, if f uses -< and sometimes calls (fail), you should not write:

(=< (£ 35) (f 46))

Instead, choose the argument to £ first, and then apply £:

(let* ([choice (-< '(3 5) '(4 6))1) (apply f choice))


streams.rkt
amb.rkt
lab8.rkt
https://en.wikipedia.org/wiki/Change-making_problem
https://en.wikipedia.org/wiki/Change-making_problem

	Starter code
	Task 1: Making change

