Lab 3: A Simple Interpreter

In this lab, you’ll get some practice with higher-order functions, and then use what you’ve learned so far to build an
interpreter for a simplified set of Racket expressions, including basic name lookup using a hash table implementation
of an environment.

Starter code

o lab3.rkt

Task 1: Representing an environment

In computer science, an interpreter is a program that takes another program as input and executes or evaluates the
contents of that program. Of course, what we mean by “execute” or “evaluate” depends on the semantics of the
programming language!

You have already written an interpreter in exercise 2 (surprise!) for a simple arithmetic language. The grammar
specifying valid expressions in our language looked like this:

Binary Arithmetic Expression Grammar (Exercise 2)

<expr> = NUM

| (<op> <expr> <expr>)

| (if (<comp> <expr> <expr>) <expr> <expr>)
<comp> = = | > | <
<op> =+ | -1 x|/

While this language will allow us to express any arithmetic operation, it would be nice to be able to save intermediate
results in variables. For example, we may wish to use a let* expression as in Racket, like this:

(let* ((a 2)
(b (x a 10)))
(+a (xab)))

This expression should evaluate to 42.

In this lab, we will add local variable bindings to our language grammar. Expressions in our language will look like
this:

Expanded Binary Arithmetic Expression Grammar

<expr> = NUM
| ID
| (<op> <expr> <expr>)
| (if (<comp> <expr> <expr>) <expr> <expr>)
| (let* ((ID <expr>) ...) <expr>)
<comp> = = | > | <
<op> =+ | -1 x|/

lab3.rkt

Where ID is an identifier (variable name). Any valid variable name in Racket will also be a valid identifier in our
language. You may assume that all identifiers are Racket symbols. You can use the Racket function symbol? to
check if an expression is an identifier.

The let* expressions have the same semantics as in Racket. The ... in the let expression means that there can be
zero or more bindings of identifiers to expression values.

In order to evaluate such an expression, we will need to build an environment.

Recall from lecture that an environment is a mapping of identifier names to values. For example, to evaluate the
expression (* a 10), we must first determine the value of a (or raise an error if it is unbound). In an interpreter, we
say that the value of a must be “looked up”’—the environment is an abstract representation of where this lookup
occurs.

But let’s turn this abstract idea into concrete code. We'll use the Racket hash table data type to store an environment;
this data type has a similar interface to a Python dictionary or Java HashMap, with the usual restriction that we
won’t be using any mutating functions.

What to do
Your task here is to write an interpreter eval-calc based on the calculate function you wrote in lab 2. The function
eval-calc will take an adidtional argument env representing the environment as a Racket hash table.

This interpreter eval-calc should have the same functionality as your previous lab, but also with the ability to
evaluate identifiers.

In this week’s exercise, we’ll explore how environments are built: i.e. how to evaluate a let* expression. For now,
focus on the cases where the expression is a NUM, ID, or (<op> <expr> <expr>).

	Starter code
	Task 1: Representing an environment
	What to do

