
UNIVERSITY OF TORONTO

Faculty of Arts and Science

Midterm CSC324H1

Duration: 50 minutes Instructor(s): David Liu. No Aids Allowed

Name:

Student Number:

Please read the following guidelines carefully.

• Please print your name and student number on the front of the exam.

• This examination has 4 questions. There are a total of 8 pages, DOUBLE-SIDED.

• The last page is an aid sheet that may be detached.

• You may always write helper functions unless asked not to.

• Documentation is not required unless asked for.

• Answer questions clearly and completely. Provide justification unless explicitly asked not to.

Take a deep breath.

This is your chance to show us

How much you’ve learned.

We WANT to give you the credit

That you’ve earned.

A number does not define you.

Question Grade Out of

Q1 8

Q2 8

Q3 4

Q4 6

Total 26

Midterm, CSC324H1

1. [8 marks] Short answer.

(a) [4 marks] You are given the following Racket definitions.

 (define (f x)

 (lambda (y) (* x y)))

 (define g (f 10))

For each of the following Racket code snippets, state what value would be output, or briefly describe what error
would be raised, when the snippet is evaluated.

(i) g

(ii) (g 3)

(iii) ((g 3))

(iv) (let ([x 100])

(g 3))

Please do not write below this line. There is extra space at the back of the test paper. Page 2/8

Midterm, CSC324H1

(b) [2 marks] Consider the following Racket function.

 (define (count-evens numbers)

 (if (null? numbers)

 0

 (if (even? (first numbers))

 (+ 1 (count-evens (rest numbers)))

 (count-evens (rest numbers)))))

Is this function tail-recursive? Explain your answer.

(c) [2 marks] Consider the following Haskell function.

 f 0 x = x

 f 1 x = 0

 f n x = f (n - 2) (x + 4)

When we evaluate f 10000000 0 in the interpreter (ghci), a very large amount of memory is used. Explain.

2. [8 marks] Functional programming. Consider the following description of a function sequence.

 #|

 (sequence functions input)

 Given a list of unary functions [f1, f2, f3, ... f-k] and input x,

 returns the value of (f-k (f-{k-1} ... (f2 (f1 x)) ...)).

 Returns `input` itself if the list of functions is empty.

 |#

 ; Example:

 (sequence (list (lambda (x) (+ x 1)) (lambda (x) (* x 3)) (lambda (x) (- 100 x)))

 4)

 ; Equals 85: (- 100 (* (+ 4 1) 3))

Please do not write below this line. There is extra space at the back of the test paper. Page 3/8

Midterm, CSC324H1

(a) [4 marks] Implement sequence in Racket or Haskell using explicit recursion. (Don’t do both; only the first
implementation will be graded.) Do not define any helper functions, and do not use any list functions that
aren’t found on the aid sheet.

(b) [4 marks] Implement sequence in Racket or Haskell without explicit recursion, and instead using one or more
higher-order list functions (e.g., map, filter, foldl).

Please do not write below this line. There is extra space at the back of the test paper. Page 4/8

Midterm, CSC324H1

3. [4 marks] Short answer (macros). Consider the following Racket macro.

 (define-syntax my-mac

 (syntax-rules ()

 [(my-mac <a> (...))

 (define (<a> f)

 (cond

 [(f)] ...

 [else (error "None")]))]))

(a) [2 marks] In the space below, give an example use of my-mac so that below it, the expression (my-f even?)

evaluates to 4.

; YOUR MACRO EXPRESSION GOES HERE.

(my-f even?) ; After evaluating your macro expression, this line should evaluate to 4.

(b) [2 marks] We have seen in the course that macros can be used to avoid the eager evaluation semantics of
function calls. Write a Racket code snippet that illustrates short-circuiting behaviour of my-mac. Also, briefly
explain why your code illustrates that behaviour.

Please do not write below this line. There is extra space at the back of the test paper. Page 5/8

Midterm, CSC324H1

4. [6 marks] Class macro. The macro my-class-constraints behaves similarly to my-class (on the aid sheet),
except it supports runtime checks on values passed to the constructor, raising an error if a check is violated.

 (my-class-constraints Point

 ; A point has two attributes, x and y, that must both be integers.

 ; Note that `integer?` is a built-in predicate.

 ((x integer?)

 (y integer?))

 ; The syntax for methods is the same as on the aid sheet.

 ...

)

 > (define p1 (Point 2 3)) ; p1 behaves exactly the same as in the original macro.

 > (define p2 (Point "hello" 3)) ; Calling `Point` here raises an error.

 Error: Contract violation in constructor

(a) [2 marks] Give an example use of my-class-constraints to create a class Person that has no methods and
two attributes, name and age. This class enforces the following constraints when its constructor is called:

• A person’s name is a string (use string?).

• A person’s age is a non-negative integer.

Please do not write below this line. There is extra space at the back of the test paper. Page 6/8

Midterm, CSC324H1

(b) [2 marks] Complete the macro pattern for my-class-constraints. Your pattern should match zero or more
attributes; every attribute must be paired with an expression representing a predicate.

(define-syntax my-class-constraints

(syntax-rules (method)

[(my-class-constraints <Class>

; (non-function) attributes

; YOUR CHANGES GO HERE!

; methods -- Don't change this part.

(method (<name> <params> ...) <body>) ...)

(c) [2 marks] Write the macro template (i.e., what the macro expands into) to implement the required behaviour
for my-class-constraints.

Important: in the my-class macro found on the aid sheet, refer to the entire (let ([class dict ...])

...) nested under (define (<Class> <attr> ...) expression as LET-EXPR. You may not modify anything
in LET-EXPR in your new template; instead, write “LET-EXPR” in your new template to refer to this part (so
that you don’t need to rewrite the entire thing).

; Write your template here.

; Your solution should be quite short. Write "LET-EXPR" to re-use most of the

; original macro template.

; HINT: `and` and `or` take an arbitrary number of arguments.

Please do not write below this line. There is extra space at the back of the test paper. Page 7/8

Midterm, CSC324H1

Use this page for rough work. If you want work on this page to be marked, please indicate this clearly at the location of
the original question.

Total Pages = 8. Total Marks = 26. Page 8/8

