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Please read the following guidelines carefully!

� Please write your name on the front and back of the exam.

� This examination has 4 questions. There are a total of 8 pages, DOUBLE-SIDED.

� You may always write helper functions unless explicitly asked not to. You may not use mutation or any
Racket iterative constructs.

� Any question you leave blank, or where you clearly cross out your work and write “I don’t know,” is worth
10% of the marks.

Take a deep breath.

This is your chance to show us

How much you’ve learned.

We WANT to give you the credit

That you’ve earned.

A number does not define you.

Good luck!
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1. [5] Consider the Racket function double-all, which takes a list, and returns a new list consisting of the items
in the original list, but with each item repeated twice. The copies of each item should appear in the same
order as the original list.

> (double-all '(2 3 4 5))

'(2 2 3 3 4 4 5 5)

> ; edge cases

> (double-all '())

'()

> (double-all '(2))

'(2 2)

Implement this function without using explicit recursion, but instead using higher-order list functions. (So-
lutions using explicit recursion will be awarded at most 3 marks.) You are encouraged to define your own
helper functions. The only list functions you may use are the ones found on the aid sheet.
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2. (a) [2] Consider the following Racket function call expression, which contains other function call subexpressions:

(a b (c b) (d (e f g) h (i)) (j k))

Using what you know about evaluation order in Racket, state the order in which the function calls in these
expressions are evaluated. You may list either the functions which are called (e.g., “c”), or the entire expression
(e.g., “(c b)”) in your answer.

(b) [3] Consider the following function definition.

(define f (lambda () 10))

State the output of each of the following expressions in Racket. No explanation necessary.

> f

> (f)

> ((f))

(c) [2] Define a closure.

(d) [2] Explain how you know that lambda is not a function. What would go wrong if we tried to define our
own “higher-order function” as follows?

(define (my-lambda args body)

(lambda args body))
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3. Consider the following Racket macro:

(define-syntax mymac

(syntax-rules ()

[(mymac) 0]

[(mymac <x> <y> ...) (<x> (mymac <y> ...))]))

(a) [4] Give an example of a correct use of the macro with at least two different arguments after the mymac.
Show three things: (1) the macro expression (mymac something ...), (2) what the expression expands
into, and (3) what the expanded expression evaluates to.

(b) [2] Name one similarity and one difference between Racket macros and functions.

(c) [2] Consider this proposed shortcut for the class macro to automatically define a basic Point class:

(define-syntax Point-class

(syntax-rules ()

[(Point-class)

(define (Point x y)

(lambda (msg)

(cond [(equal? msg "x") x]

[(equal? msg "y") y]

[else "Attribute error!"])))]))

Why can’t we use this macro to do what we want?
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4. (a) [3] Consider the simplified class macro provided on the aid sheet.

We want to extend this macro to class-private, which allows the user to follow the public attributes with
some “private attributes”: values set by the constructor which are accessible to the methods, but not from
outside the class.

Example of the required syntax:

(class-private A (a) (private b c)

[(f x) (+ x (* a b))])

> (define obj (A 10 20 30))

> ((obj "f") 3)

203

> (obj "b")

"Unrecognized message!"

Note that private is a literal keyword which must appear before the private attributes.

In the space below, define an extended class macro to enable this syntax. You should re-use most or all of the
code we provided above. You may assume there is always at least one private attribute, and there aren’t any
name conflicts. There can be any number of public methods and attributes, same as the regular class macro.

Please add comments to identify what code you’ve added/changed.

(define-syntax class-private
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(b) [3] Suppose we wanted to allow a user to mix the order of private and public attributes. We have partially
defined a helper macro which can take a list of expressions, and extract the identifiers paired with the literal
keyword private.

(extract-private (a (private b) c (private d)) ())

; ==> (macro transformation)

(b d)

Notice that this macro takes a second argument, which we recommend you use as an accumulator. Complete
the macro by filling in the recursive rules.

(define-syntax extract-private

(syntax-rules (private)

[(extract-private () <acc>) <acc>]

[(extract-private ((private <id>) <other-ids> ...) (<acc-ids> ...))

]

[(extract-private (<non-private> <other-ids> ...) (<acc-ids> ...))

])
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Use this page for rough work.
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Name:

There were two proposed names for the language on Assignment 1. Circle the one you like more.

FunShake Jigglejavelin

Q1 Q2 Q3 Q4 Total
Grade
Out Of 5 9 8 6 28


