OIOICIOIVICIOIVIOIO),

OOOOOLOOLOOO

OIOINISINIOINIOIOIO))

OISISIOINIOIOIOIOI®),

s

uration — 50 minutes OI0]0ININININININIO)
Aids allowed: none
Student Number: OOOOOOLOO®O®O®

UTORIid: | I I I I I I I]
Last Name: First Name:

Lecture Section: L0102 Test Version: B Instructor: Lisa Zhang

Do not turn this page until you have received the signal to start.
(Please fill out the identification section above, and read the instructions below.)

Good Luck!
1: /7
. # 2 / 3
This test consists of 5 questions on 8 pages (including this page). When you
receive the signal to start, please make sure that your copy is complete. 4 3: /5
Comments are not required except where indicated, although they may help
us mark your answers. They may also get you part marks if you can’t figure # 4 /5
out how to write the code.
If you use any space for rough work, indicate clearly what you want marked. #o_____ /5
TOTAL: /25

Total Pages = 8

MIDTERM Fall 2018

Question 1. [7 MARKS]
Part (a) [2 MARKS]

In Racket, can if expressions of the form (if <cond> <then> <else>) be implemented as a function?
Why or why not?

Part (b) [3 MARKS]

What do the following Racket expressions evaluate to? If there is an error, explain why.

> (define (f x) (lambda (x) x))
> (f 1)

> (f12)

> ((f 1) 2)

Part (c) [2 MARKS]

What do the following Haskell expressions evaluate to? If there is an error, explain why.

Prelude> g x y = x
Prelude> g 2

Prelude> g 4 (1 / 0)

Page 2 of 8

MIDTERM Fall 2018

Question 2. [3 MARKS]
Part (a) [2 MARKS]

Consider the calculator grammar from Exercise 4:

<expr> ::= NUM ;; integer in base 10
| ID ;3 variable names (excluding +, -, *, /, =, >, <)
| (<op> <expr> <expr>)
| (if (<comp> <expr> <expr>) <expr> <expr>)
| (let* ((ID <expr>) ...) <expr>)
| (lambda (ID ...) <expr>)
| (<expr> <expr> ...)
<comp> ::== | > | <
<op> =+ | - | x|/

Cross out any of the four expressions below that are not syntactically valid in this grammar.

e (lambda (x) (= x (+ 3 4)))
e ()
e (if (= (lambda (x) x) (lambda (y) y)) 3 4)

e (34 5)

Part (b) [1 MARK]

What is a closure?

Page 3 of 8

MIDTERM Fall 2018

Question 3. [5 MARKS]
Part (a) [2 MARKS]
Consider the following macro:
(define-syntax my-macro
(syntax-rules ()
[(my-macro (x> (<y>) ...)) (1list ’a <x>)]

[(my-macro (<x>)) (1ist ’b <x>)]
[(my-macro (<x> <y> ...)) (list ’c <y> ...)1)N

Perform macro expansion on the following two expressions. Write “ERROR” without further explanation
if there is an error.

(my-macro (1))

(my-macro (1 (2) 3))

Part (b) [3 MARKS]

Create a class Pet with the attribute name and age, and a method birthday that returns a new Pet with
the same name, and with the age incremented by one.

Page 4 of 8

MIDTERM Fall 2018

Question 4. [5 MARKS]

Recall that we can use cond in Racket to write conditional statements. However, any code written in terms
of cond can be rewritten using nested calls to if.

(define (f x) (define (f x)
(cond [(< x 3) (+ x 3)] (if (< x 3)
[x B) (x x 2)] (+ x 3)
[else +x DI (if (> x 5)
(x x 2)
+x 1))

Complete the following implementation of a macro my-cond. The arguments of my-cond follow the Racket
syntax for cond; the macro rewrites the expression in terms of equivalent calls to if. You may assume
that the final condition of cond will be an else.
(define-syntax my-cond
(syntax-rules (else)
[(my-cond [else <expr>])

[(my-cond [<cond> <expr>] <rest> ...)
(if

))1))

Page 5 of 8

MIDTERM Fall 2018

Question 5. [5 MARKS]

Write a function merge in Racket that merges two sorted lists. For example:

> (merge (1 4 5) ’(2 4))
’(1 24 45)

> (merge (1 4 5) ()
’(1 4 5)

> (merge () ’(5))

> (5)

For full marks, use tail recursion. A non-tail recursive solution can earn up to 3 points. You may write as
many helper functions as you need, and use any of the list functions in the aid sheet.

Page 6 of 8

MIDTERM Fall 2018

[Use the space below for rough work. This page will not be marked unless you clearly indicate the part of
your work that you want us to mark./

Page 7 of 8

MIDTERM Fall 2018

Page 8 of 8 END OF TEST

