
CSC 324H5 F 2019 Midterm
Duration — 50 minutes

Aids allowed: none

Student Number:

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

UTORid:

Last Name: First Name:

Lecture Section: L0101 Test Version: A Instructor: Lisa Zhang

Do not turn this page until you have received the signal to start.
(Please fill out the identification section above, and read the instructions below.)

Good Luck!

This test consists of 5 questions on 8 pages (including this page). When you
receive the signal to start, please make sure that your copy is complete.
Comments are not required except where indicated, although they may help
us mark your answers. They may also get you part marks if you can’t figure
out how to write the code.
If you use any space for rough work, indicate clearly what you want marked.

1: / 7

2: / 4

3: / 4

4: / 5

5: / 5

TOTAL: /25

Total Pages = 8

Midterm Fall 20l8

Question 1. [7 marks]

Part (a) [2 marks]

Why is the following Haskell implementation of foldl inefficient?

foldl _ acc [] = acc

foldl f acc (x:xs) =

let acc’ = f acc x

in

foldl f acc’ xs

Part (b) [3 marks]

What do the following Racket expressions evaluate to? If there is an error, explain why.

> (define (f x) (lambda () (x)))

> (f 1)

> ((f 1))

> ((f (lambda (x) 3)))

Part (c) [2 marks]

What do the following Haskell expressions evaluate to? If there is an error, explain why.

Prelude> g x y = if x then x else y

Prelude> g True

Prelude> ((g False False))

Page 2 of 8

Midterm Fall 20l8

Question 2. [4 marks]

Part (a) [2 marks]

Consider the calculator grammar from Exercise 4:

<expr> ::= NUM ;; integer in base 10

| ID ;; variable names (excluding +, -, *, /, =, >, <)

| (<op> <expr> <expr>)

| (if (<comp> <expr> <expr>) <expr> <expr>)

| (let* ((ID <expr>) ...) <expr>)

| (lambda (ID ...) <expr>)

| (<expr> <expr> ...)

<comp> ::= = | > | <

<op> ::= + | - | * | /

Cross out any of the four expressions below that are not syntactically valid in this grammar.

• (lambda (a b) (lambda (a b) (a b)))

• y

• (let* ((x (> 1 1)) (if x 1 0)))

• (= 1 1)

Part (b) [2 marks]

Provide an example expression in the calculator grammar whose behaviour would differ depending on
whether we used lexical or dynamic scoping.

Page 3 of 8

Midterm Fall 20l8

Question 3. [4 marks]

Part (a) [2 marks]

Consider the following macro:

(define-syntax my-macro

(syntax-rules ()

[(my-macro (<x>) <y> ...) (list ’a <x>)]

[(my-macro (<x>) ...) (list ’b <x> ...)]

[(my-macro (<x> <y> ...)) (list ’c <y> ...)]))

Perform macro expansion on the following two expressions. Write “ERROR” without further explanation
if there is an error.

(my-macro (1) (2) (3))

(my-macro (4))

Part (b) [2 marks]

Consider the my-class macro in the aid sheet. What does the (method) in the second line do? Give an
example call to my-class that would result in an undesirable behaviour if we replaced (method) with ().

(define-syntax my-class

(syntax-rules (method)

...))

Page 4 of 8

Midterm Fall 20l8

Question 4. [5 marks]

Recall that we can use let* in Racket for local variable binding. However, any code written in terms of
let* can be rewritten using nested lambda definitions.

(let* ((a 3)

(b 4))

(+ a b))

((lambda (a)

((lambda (b) (+ a b))

4)

3)

Complete the following implementation of a macro my-let*. The arguments of my-let* follow the Racket
syntax for let*; the macro rewrites the expression in terms of the equivalent lambda definitions.

(define-syntax my-let*

(syntax-rules ()

[(my-let* () <body>)

]

[(my-let* ((<name> <expr>) <rest> ...) <body>)

((lambda

(my-let*))

))]))

Page 5 of 8

Midterm Fall 20l8

Question 5. [5 marks]

Write a function split in Racket that splits a list into two, where the list elements alternate. For example:

> (split ’(1 2 3 4 5))

’((1 3 5) (2 4))

> (split ’())

’(() ())

For full marks, use tail recursion. A non-tail recursive solution can earn up to 3 points. You may write as
many helper functions as you need, and use any of the list functions in the aid sheet.

Page 6 of 8

Midterm Fall 20l8

[Use the space below for rough work. This page will not be marked unless you clearly indicate the part of
your work that you want us to mark.]

Page 7 of 8

Midterm Fall 20l8

Page 8 of 8 End of Test

