
DECEMBER 2018 Final Exam CSC 324H5F

Last Name: First Name:

Student #: Signature:

UNIVERSITY OF TORONTO MISSISSAUGA
DECEMBER 2018 FINAL EXAMINATION

CSC324H5F
Principles of Programming Languages

Daniel Zingaro, Lisa Zhang
Duration - 2 hours

Aids: none

The University of Toronto Mississauga and you, as a student, share a commitment to academic integrity. You are
reminded that you may be charged with an academic offence for possessing any unauthorized aids during the writing
of an exam. Clear, sealable, plastic bags have been provided for all electronic devices with storage, including but not
limited to: cell phones, smart devices, tablets, laptops, calculators, and MP3 players. Please turn off all devices, seal
them in the bag provided, and place the bag under your desk for the duration of the examination. You will not be
able to touch the bag or its contents until the exam is over.

If, during an exam, any of these items are found on your person or in the area of your desk other than in the clear,
sealable, plastic bag, you may be charged with an academic offence. A typical penalty for an academic offence may
cause you to fail the course.

Please note, once this exam has begun, you CANNOT re-write it.

You must earn 40% or above on the exam to pass the course; else, your final course mark will be set no higher than

47%.

This final examination consists of 7 questions
on 14 pages (including this page), plus
an additional aid sheet at the back of the
exam. You may detach the aid sheet if you
wish, but please do so without removing
any other page from the exam. When you
receive the signal to start, please make sure
that your copy of the examination is complete.

If you need more space for one of your
solutions, use the last pages of the exam and
indicate clearly the part of your work that
should be marked.

Marking Guide

1: /10

2: / 5

3: / 6

4: /10

5: / 6

6: / 5

7: / 8

TOTAL: /50Good Luck!

Page 1 of 14 cont’d. . .

CSC 324H5F Final Exam DECEMBER 2018

Question 1. [10 marks]

Circle either “True” or “False” for each of the below statements.

1. True False Racket is a dynamically typed language.

2. True False
Imperative programming is more declarative than logic programming be-
cause we declare more variables.

3. True False Types with multiple value constructors are called “polymorphic”.

4. True False
The higher-order function foldl is more efficiently implemented in Haskell
than in Racket.

5. True False
In a tail-recursive function, the accumulator should be either a number or a
list.

6. True False The higher-order function foldl can be written in terms of map.

7. True False
In Racket, the expressions (+ 3 1) and ((+ 3 1)) evaluate to the same
value.

8. True False
In Haskell, the expressions (3 + 1) and ((3 + 1)) evaluate to the same
value.

9. True False In the Racket expression (+ 3 1), the continuation of + is

10. True False
In Racket, to append the value 5 to the end of the list (list 1 2 3 4), we
write (append (list 1 2 3 4) 5).

Page 2 of 14 cont’d. . .

DECEMBER 2018 Final Exam CSC 324H5F

Question 2. [5 marks]

Part (a) [3 marks]

Recall that we can use cond in Racket to write conditional statements. However, any code written in terms
of cond can be rewritten using nested calls to if.

(define (f x)

(cond [(< x 3) (+ x 3)]

[(> x 5) (* x 2)]

[else (+ x 1)]))

(define (f x)

(if (< x 3)

(+ x 3)

(if (> x 5)

(* x 2)

(+ x 1))))

Complete the following implementation of a macro my-cond by filling in one name per box. The arguments
of my-cond follow the Racket syntax for cond; the macro rewrites the expression in terms of equivalent
calls to if. You may assume that the final condition of cond will be an else.

(define-syntax my-cond

(syntax-rules ()

[(my-cond [else <expr>])

]

[(my-cond [<cond> <expr>] <rest> ...)

(if

())]))

Part (b) [2 marks]

Why should my-cond be defined as a macro, rather than a function? (Be concise; only the first 10 words
of your answer will be graded.)

Page 3 of 14 cont’d. . .

CSC 324H5F Final Exam DECEMBER 2018

Question 3. [6 marks]

For both parts of this question, please use recursion directly; i.e. do not use higher-order list functions
such as map and foldl.

Part (a) [2 marks]

Write the Racket function list-max that takes a nonempty list of integers, and returns the biggest value
in the list. For example:

> (list-max ’(2 8 1))

8

> (list-max ’(1))

1

(define (list-max lst)

Page 4 of 14 cont’d. . .

DECEMBER 2018 Final Exam CSC 324H5F

Part (b) [4 marks]

Write the Racket function biggest that takes an argument lst, where lst is a list and each of its
elements is a nonempty list of integers. The function biggest returns the sublist in lst containing the
biggest element. If there are multiple sublists that contain the biggest element, return any one of them.

> (biggest ’((2 3 6) (8 1)))

’(8 1)

> (biggest ’((2 3 6) (8 1) (8 4 3))

’(8 1) ; or ’(8 4 3), either return value is acceptable

You may use the helper function list-max from part (a), and define any other helper functions you like.
However, do not use higher-order list functions such as map and foldl.

(define (biggest lst)

Page 5 of 14 cont’d. . .

CSC 324H5F Final Exam DECEMBER 2018

Question 4. [10 marks]

We would like to define a Haskell function andmap that takes a function f and a list lst, and returns
whether f x evaluates to true for every x in lst. Here are some examples:

Prelude> andmap (> 3) [4, 5]

True

Prelude> andmap (> 3) []

True

Prelude> andmap (\x -> x) [False, True, False]

False

Part (a) [2 marks]

The function andmap is polymorphic. Complete the type signature of andmap.

andmap ::

Part (b) [4 marks]

Write the definition of andmap using a single call to foldl.

Page 6 of 14 cont’d. . .

DECEMBER 2018 Final Exam CSC 324H5F

Part (c) [2 marks]

What is the type of the variable mystery defined below?

apply x f = f x

mystery = andmap (apply Nothing)

Part (d) [2 marks]

Consider a total function f in Haskell with the following type.

f :: a -> (b -> c) -> [b] -> b -> c

Provide an implementation of f. Your implementation should not use the Haskell value undefined or
raise an exception.

Page 7 of 14 cont’d. . .

CSC 324H5F Final Exam DECEMBER 2018

Question 5. [6 marks]

Part (a) [3 marks]

Each of the below expressions is executed, in sequence, in a Racket shell. Fill in the output of each
expression. If an error occurs, simply write “ERROR” without further explanation.

> (define cont null)

> (let/cc c 3)

> (+ 3 (let/cc c

(begin (set! cont c)

1)))

> (c 5)

> (cont 5)

> (+ 1 (cont 5))

> (cont (cont 5))

Part (b) [3 marks]

Define an error-raising continuation called raise, which takes a string argument. When raise is called,
it should cause the program to halt and return the string. You may use mutation.

> (define denom 0)

> (+ 5 (if (equal? denom 0)

(raise "The denominator is zero")

(/ 3 denom)))

"The denominator is zero"

> (* 2 (raise "error"))

"error"

Page 8 of 14 cont’d. . .

DECEMBER 2018 Final Exam CSC 324H5F

Question 6. [5 marks]

Consider a list of unique integers in Racket; for example, the list ’(4 6 10). We would like to explore
subsets of these integers that do not contain integers appearing directly next to each other. For example,
if a subset contains 4, then the subset should not also contain 6.

Write a function solution that uses logic programming to return the first such subset, and makes the
remaining possible subsets available through calls to next. The order that solutions are produced does not
matter; just produce them all.

> (solution ’(4 6 10))

’()

> (next)

’(4)

> (next)

’(6)

> (next)

’(10)

> (next)

’(4 10)

> (next)

’done

(define (solution lst)

Page 9 of 14 cont’d. . .

CSC 324H5F Final Exam DECEMBER 2018

Question 7. [8 marks]

Consider the following type declarations:

-- type declarations

data Person = Person String Float -- name, salary

data Robot = Robot Int -- identifier

data Organization p = Individual p -- organization of one

| Team p [Organization p] -- team leader, and list of sub-orgs

-- example:

owner = Person "Janet" 100000

cto = Person "Larry" 90000

cfo = Person "Mike" 90000

intern = Person "Sam" 40000

company = Team owner [Team cto [Individual intern],

Individual cfo]

-- robot organization:

robot1 = Robot 1

robotOrg = Individual robot1

Part (a) [2 marks]

We discussed how value constructors are functions in Haskell. What are the type signatures of each
value constructor created above? If the name on the left of :: is not a value constructor, write “Not a
constructor”.

Person ::

Organization ::

Individual ::

Team ::

Page 10 of 14 cont’d. . .

DECEMBER 2018 Final Exam CSC 324H5F

Part (b) [4 marks]

Recall that a functor is a type class that supports mapping. Write code so that the type constructor
Organization is an instance of the type class Functor, where a given function would be mapped over
every p in the Organization.

instance Functor Organization where

Part (c) [1 mark]

Consider the function applyAnnualRaise, which increases a Person’s salary by a fixed 3%. Use a call
to fmap to apply this function to everyone in the organization company (defined at the beginning of this
question). Save the result in the variable called companyWithRaise.

applyAnnualRaise :: Person -> Person

applyAnnualRaise (Person name salary) = Person name (salary * 1.03)

companyWithRaise =

Part (d) [1 mark]

Consider the function robotize, which replaces a Person with a Robot. Use a call to fmap to turn company

(defined at the beginning of this question) into an organization with the same structure, but populated
entirely by robots. Save the result in the variable called robotCompany.

robotize :: Person -> Robot

robotize p = Robot 0

robotCompany =

Page 11 of 14 cont’d. . .

CSC 324H5F Final Exam DECEMBER 2018

[Use the space below for rough work. This page will not be marked, unless you clearly indicate the part
of your work that you want us to mark.]

Page 12 of 14 cont’d. . .

DECEMBER 2018 Final Exam CSC 324H5F

[Use the space below for rough work. This page will not be marked, unless you clearly indicate the part
of your work that you want us to mark.]

Page 13 of 14 cont’d. . .

CSC 324H5F Final Exam DECEMBER 2018

[Use the space below for rough work. This page will not be marked, unless you clearly indicate the part
of your work that you want us to mark.]

Page 14 of 14 End of Examination

