
DECEMBER 2019 Final Exam CSC324H5F

Last Name: First Name:

Student #: Signature:

UNIVERSITY OF TORONTO MISSISSAUGA

DECEMBER 2019 FINAL EXAMINATION

CSC324H5F

Principles of Programming Languages

Lisa Zhang

Duration - 2 hours

Aids: None

The University of Toronto Mississauga and you, as a student, share a commitment to academic integrity. You are
reminded that you may be charged with an academic o↵ence for possessing any unauthorized aids during the writing
of an exam. Clear, sealable, plastic bags have been provided for all electronic devices with storage, including but not
limited to: cell phones, smart devices, tablets, laptops, calculators, and MP3 players. Please turn o↵ all devices, seal
them in the bag provided, and place the bag under your desk for the duration of the examination. You will not be
able to touch the bag or its contents until the exam is over.

If, during an exam, any of these items are found on your person or in the area of your desk other than in the clear,
sealable, plastic bag, you may be charged with an academic o↵ence. A typical penalty for an academic o↵ence may
cause you to fail the course.

Please note, once this exam has begun, you CANNOT re-write it.

You must earn 40% or above on the exam to pass the course; else, your final course mark will be set no higher than

47%.

This final examination consists of 8 questions on 14 pages,

including this page, and including aid sheets at the back

of the exam. You may detach the aid sheet if you wish,

but please do so without removing any other page from the

exam. When you receive the signal to start, please make

sure that your copy of the examination is complete.

If you need more space for one of your solutions, use

one of the last pages of the exam and indicate clearly the

part of your work that should be marked.

Marking Guide

1: / 8

2: / 9

3: / 6

4: / 6

5: / 7

6: / 6

7: / 4

8: / 4

TOTAL: /50Good Luck!

Page 1 of 14 cont’d. . .

DECEMBER 2019 Final Exam CSC324H5F

Racket

; Function definition and application
(lambda (x y) (* x y))
(lambda () 16)

(+ 3 4 5) ; 12
(equal? 3 (- 4 25)) ; #f
((lambda (x) (+ 3 x)) 10) ; 13

; Name bindings
(define x 10)
(define (f z) (first (rest z)))
(define f2 (lambda (z) (first (rest z))))
(let* ([y (+ 10 20)]

[z (+ 10 y)])
(* y z))

; Syntactic forms
(and #f (/ 1 0)) ; #f
(or #t (/ 1 0)) ; #t
(if #t 42 (/ 1 0)) ; 42
(cond [#f (/ 1 0)]

[#t 42]
[(/ 1 0) 25]
[else 1]) ; 42

; Pattern matching
(define/match (comment x)
[(7) "Lucky"]
[(13) "Unlucky"]
[(_) "Other"])

(define/match (f lst)
[((list)) 100]
[((cons x xs)) (+ x (length xs))])

; Lists
(cons 2 (cons 3 null)) ; ’(2 3)
(list 1 2 20) ; ’(1 2 20)
(range 0 5) ; ’(0 1 2 3 4)
(first (list 1 2 3)) ; 1
(rest (list 1 2 3)) ; ’(2 3)
(null? null) ; #t
(length (list 1 20 5)) ; 3
(append (list 1 2 3)

(list 4 5 6)) ; ’(1 2 3 4 5 6)
(member 2 (list 1 2 3)) ; ’(2 3)
(member 4 (list 1 2 3)) ; #f
(list-ref (list 2 40 1) 1) ; 40
(take (list 1 2 3 4) 2) ; ’(1 2)
(drop (list 1 2 3 4) 2) ; ’(3 4)

(map (lambda (x) (* 3 x))
(list 1 2 3)) ; ’(3 6 9)

(filter (lambda (x) (< 3 x))
(list 10 -4 15)) ; ’(10 15)

(foldl + 15 (list 1 2 3)) ; (3 + (2 + (1 + 15)))
(foldr + 15 (list 1 2 3)) ; (1 + (2 + (3 + 15)))
(apply - (list 16 3)) ; 13

Haskell

-- Function definition and application
\x -> x + x
\x y -> x * y

max 3 4 -- 4
3 + 4 -- 7
(==) 3 4 -- False

-- Name bindings
x = 10
f z = z + 10
f2 = \z -> z + 10
let y = 20 + 10

z = y + 10
in y * z

-- If (note that && and || are functions)
f x =
if x == 10
then 16
else -20

-- Pattern matching
comment 7 = "Lucky"
comment 13 = "Unlucky"
comment _ = "Other"

f [] = 100
f (x:xs) = x + length xs

-- Lists
2:3:[] -- [2,3]
[1,2,20] -- [1,2,20]
[0..4] -- [0,1,2,3,4]
head [1,2,3] -- 1
tail [1,2,3] -- [2,3]
null [] -- True
length [1,2,20] -- 3
[1,2] ++ [4,6] -- [1,2,4,6]

elem 2 [1,2,3] -- True
elem 4 [1,2,3] -- False
[20,40,1] !! 1 -- 40
take 2 [1,2,3,4] -- [1,2]
drop 2 [1,2,3,4] -- [3,4]

map (\x -> 3 * x) [1,2,3] -- [3,6,9]

filter (\x -> 3 < x) [10,-4,15] -- [10,15]

foldl (+) 15 [1,2,3] -- (((15 + 1) + 2) + 3)
foldr (+) 15 [1,2,3] -- (1 + (2 + (3 + 15)))

Page 13 of 14 cont’d. . .

CSC324H5F Final Exam DECEMBER 2019

Streams, Continuations, and Choice

; Streams
(define s-null ’s-null)
(define-syntax s-cons
(syntax-rules ()
[(s-cons <first> <rest>)
(cons (thunk <first>) (thunk <rest>))]))

(define (s-first stream) ((car stream)))
(define (s-rest stream) ((cdr stream)))
(define-syntax make-stream
(syntax-rules ()
[(make-stream) s-null]
[(make-stream <first> <rest> ...)
(s-cons <first> (make-stream <rest> ...))]))

; The ambiguous choice operator
(define (-< . lst)
(shift k (s-append-map k lst)))

(define (s-append-map k lst)
(if (empty? lst)

s-null
(s-append
(k (first lst))
(thunk (s-append-map k (rest lst))))))

(define (s-append s t)
(cond
[(s-null? s) (t)]
[(pair? s)
(s-cons (s-first s)

(s-append (s-rest s) t))]
[else (s-cons s (t))]))

(define-syntax do/-<
(syntax-rules ()

[(do/-< <expr>)
(thunk (reset (singleton <expr>)))]))

(define (singleton x) (make-stream x))

; Self-updating stream
(define-syntax next!
(syntax-rules ()
[(next! <g>) ; <g> is a thunk that

; evaluates to a stream
(let* ([stream (<g>)]) ; evaluate <g>
(if (s-null? stream)

’DONE
(begin

(set! <g> (cdr stream))
(s-first stream))))]))

; Backtracking
(define (fail) (shift k s-null))

Haskell Types

-- Type annotations
True :: Bool
(&&) :: Bool -> Bool -> Bool
head :: [a] -> a
map :: (a -> b) -> [a] -> [b]
(==) :: Eq a => a -> a -> Bool
1 :: Num a => a
(+) :: Num a => a -> a -> a

-- Type declarations, type synonyms
data Point = Point Int Int
data Tree a = Empty | Tree a (Tree a) (Tree a)
type String = [Char]

-- Typeclass instantiation
instance Show Point where
show (Point x y) =
"(" ++ (show x) ++ ", " ++ (show y) ++ ")"

-- Functors and monads
class Functor f where

fmap :: (a -> b) -> f a -> f b

class Monad m where
(>>=) :: m a -> (a -> m b) -> m b
return :: a -> m a

-- Modeling failures
data Maybe a = Nothing | Just a
data Either a b = Left a | Right b

-- Modeling mutation
data State s a = State (s -> (a, s))

get :: State s s
get = State (\state -> (state, state))

put :: s -> State s ()
put x = State (_ -> ((), x))

runState :: State s a -> s -> (a, s)
runState (State f) init = f init

-- NOTE: Maybe, (Either a), (State s), and IO
-- are all instances of Functor and Monad.

Page 14 of 14 End of Examination

