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Racket

; Function definition and application
(lambda (x y) (* x y))
(lambda () 16)

(+ 3 4 5) ; 12
(equal? 3 (- 4 25)) ; #f
((lambda (x) (+ 3 x)) 10) ; 13

; Name bindings
(define x 10)
(define (f z) (first (rest z)))
(define f2 (lambda (z) (first (rest z))))
(let* ([y (+ 10 20)]

[z (+ 10 y)])
(* y z))

; Syntactic forms
(and #f (/ 1 0)) ; #f
(or #t (/ 1 0)) ; #t
(if #t 42 (/ 1 0)) ; 42
(cond [#f (/ 1 0)]

[#t 42]
[(/ 1 0) 25]
[else 1]) ; 42

; Pattern matching
(define/match (comment x)
[(7) "Lucky"]
[(13) "Unlucky"]
[(_) "Other"])

(define/match (f lst)
[((list)) 100]
[((cons x xs)) (+ x (length xs))])

; Lists
(cons 2 (cons 3 null)) ; ’(2 3)
(list 1 2 20) ; ’(1 2 20)
(range 0 5) ; ’(0 1 2 3 4)
(first (list 1 2 3)) ; 1
(rest (list 1 2 3)) ; ’(2 3)
(null? null) ; #t
(length (list 1 20 5)) ; 3
(append (list 1 2 3)

(list 4 5 6)) ; ’(1 2 3 4 5 6)
(member 2 (list 1 2 3)) ; ’(2 3)
(member 4 (list 1 2 3)) ; #f
(list-ref (list 2 40 1) 1) ; 40
(take (list 1 2 3 4) 2) ; ’(1 2)
(drop (list 1 2 3 4) 2) ; ’(3 4)

(map (lambda (x) (* 3 x))
(list 1 2 3)) ; ’(3 6 9)

(filter (lambda (x) (< 3 x))
(list 10 -4 15)) ; ’(10 15)

(foldl + 15 (list 1 2 3)) ; (3 + (2 + (1 + 15)))
(foldr + 15 (list 1 2 3)) ; (1 + (2 + (3 + 15)))
(apply - (list 16 3)) ; 13

Haskell

-- Function definition and application
\x -> x + x
\x y -> x * y

max 3 4 -- 4
3 + 4 -- 7
(==) 3 4 -- False

-- Name bindings
x = 10
f z = z + 10
f2 = \z -> z + 10
let y = 20 + 10

z = y + 10
in y * z

-- If (note that && and || are functions)
f x =
if x == 10
then 16
else -20

-- Pattern matching
comment 7 = "Lucky"
comment 13 = "Unlucky"
comment _ = "Other"

f [] = 100
f (x:xs) = x + length xs

-- Lists
2:3:[] -- [2,3]
[1,2,20] -- [1,2,20]
[0..4] -- [0,1,2,3,4]
head [1,2,3] -- 1
tail [1,2,3] -- [2,3]
null [] -- True
length [1,2,20] -- 3
[1,2] ++ [4,6] -- [1,2,4,6]

elem 2 [1,2,3] -- True
elem 4 [1,2,3] -- False
[20,40,1] !! 1 -- 40
take 2 [1,2,3,4] -- [1,2]
drop 2 [1,2,3,4] -- [3,4]

map (\x -> 3 * x) [1,2,3] -- [3,6,9]

filter (\x -> 3 < x) [10,-4,15] -- [10,15]

foldl (+) 15 [1,2,3] -- (((15 + 1) + 2) + 3)
foldr (+) 15 [1,2,3] -- (1 + (2 + (3 + 15)))
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Streams, Continuations, and Choice

; Streams
(define s-null ’s-null)
(define-syntax s-cons
(syntax-rules ()
[(s-cons <first> <rest>)
(cons (thunk <first>) (thunk <rest>))]))

(define (s-first stream) ((car stream)))
(define (s-rest stream) ((cdr stream)))
(define-syntax make-stream
(syntax-rules ()
[(make-stream) s-null]
[(make-stream <first> <rest> ...)
(s-cons <first> (make-stream <rest> ...))]))

; The ambiguous choice operator
(define (-< . lst)
(shift k (s-append-map k lst)))

(define (s-append-map k lst)
(if (empty? lst)

s-null
(s-append
(k (first lst))
(thunk (s-append-map k (rest lst))))))

(define (s-append s t)
(cond
[(s-null? s) (t)]
[(pair? s)
(s-cons (s-first s)

(s-append (s-rest s) t))]
[else (s-cons s (t))]))

(define-syntax do/-<
(syntax-rules ()

[(do/-< <expr>)
(thunk (reset (singleton <expr>)))]))

(define (singleton x) (make-stream x))

; Self-updating stream
(define-syntax next!
(syntax-rules ()
[(next! <g>) ; <g> is a thunk that

; evaluates to a stream
(let* ([stream (<g>)]) ; evaluate <g>
(if (s-null? stream)

’DONE
(begin

(set! <g> (cdr stream))
(s-first stream))))]))

; Backtracking
(define (fail) (shift k s-null))

Haskell Types

-- Type annotations
True :: Bool
(&&) :: Bool -> Bool -> Bool
head :: [a] -> a
map :: (a -> b) -> [a] -> [b]
(==) :: Eq a => a -> a -> Bool
1 :: Num a => a
(+) :: Num a => a -> a -> a

-- Type declarations, type synonyms
data Point = Point Int Int
data Tree a = Empty | Tree a (Tree a) (Tree a)
type String = [Char]

-- Typeclass instantiation
instance Show Point where
show (Point x y) =
"(" ++ (show x) ++ ", " ++ (show y) ++ ")"

-- Functors and monads
class Functor f where

fmap :: (a -> b) -> f a -> f b

class Monad m where
(>>=) :: m a -> (a -> m b) -> m b
return :: a -> m a

-- Modeling failures
data Maybe a = Nothing | Just a
data Either a b = Left a | Right b

-- Modeling mutation
data State s a = State (s -> (a, s))

get :: State s s
get = State (\state -> (state, state))

put :: s -> State s ()
put x = State (\_ -> ((), x))

runState :: State s a -> s -> (a, s)
runState (State f) init = f init

-- NOTE: Maybe, (Either a), (State s), and IO
-- are all instances of Functor and Monad.
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