This exercise ties together concepts that we have been discussing since the first lecture to solve a real-life problem.
One important learning goal in this exercise is to develop experience breaking programming languages problems into
parts.

A. Start with the ideas

To type check the entire spreadsheet data structure, we’ll break the problem into two parts:

1. Type check a single formula.
2. Combine the results of type checking each formula.

B. Type checking a single formula

Type checking a single formula means:

1. Checking that the return of the formula aligns with the annotated return type
2. Checking that each argument in the formula aligns with what is expected

The second step will be recursive, since the argument of a formula could also be a formula!
In order to type check a single formula, we will need the following pieces of information:

o The formula itself (whose Haskell type is Formula)

o The formula’s annotated return type (whose Haskell type is Type), which should be either StrCol or NumCol

e The mapping between column names and their types. The reason is that our formula could mention other
column by name, so we need a way to look up their value.

These three components are the parameters to the helper function typeCheckFormula, which has the following Haskell
type annotation:

typeCheckFormula :: Formula -> Type -> TypeEnv -> Bool

This function will perform steps 1 and 2 at the top of Section B. Since these two steps will differ depending on the
kind of Formula we have, we can pattern match on the formulas. Let’s start with (Length x):

Formula pattern: (Length s)
typecheckFormula (Length s) ctype tenv = ...

In order for this type of formula to type check, two things must be true: (a) the annotated return type ctype needs
to be a NumCol, and (b) the argument formula s needs to be a StrCol. So, we need these conditions to be true:

typecheckFormula (Length s) ctype tenv =
and [ctype == NumCol, -- condition (a)
typecheckFormula s StrCol tenv] -- condition (b)

The code for condition (a) checks whether the return type is NumCol. The code for condition (b) recursively checks
whether s also passes type checking.

The code for (NumToString s) follows the same logic.
Formula pattern: (Plus s t)

The code to type check (Plus s t) is actually not that different. The only difference is that we have two parameters
to type check:

typecheckFormula (Plus s t) ctype tenv =

and [ctype == NumCol, -- type check return type
typecheckFormula s NumCol tenv, -- type check argument s
typecheckFormula t NumCol tenv] -- type check argument t

The code for (Concat s t) follows the same logic.

Formula pattern: (Column s)

For this final pattern, we need to check that the output column type is consistent with the input column type. That
is, we need to check that ctype is consistent with the type of k in side the map tenv.

We would perform the map lookup using the expression (Map.lookup k tenv). This will give us a value of type
Maybe Type, with the possible values being Just StrCol, Just NumCol and Nothing. We want to make sure that
the value is the same as Just ctype:

typecheckFormula (Column k) ctype tenv =
(Map.lookup k tenv) == Just ctype

C. Combining the results of type checking each formula

We would like to use the helper function to complete this function:

typeCheck :: TypeEnv -> Formulas -> Bool
typeCheck tenv formulas = ...

T’ll present two ways to do this problem: one by “folding” over a Haskell Map, and another by “mapping” over that
Map. Since we’re not familiar with Haskell Maps, the natural thing to do is to look at the functions available here:

https://hackage.haskell.org/package/containers-0.4.2.0/docs/Data-Map.html

Foldl

The intended solution is to use Map.foldlWithKey to check each formula. This function has the following type
signature, and works similarly to foldl. Our accumulator will be a boolean that represents whether type checking is
successful so far.

Map.foldlWithKey :: (a -> k -> b -> a) -> a -> Map k b -> a
So, at the top level, our solution will look like this:

typeCheck tenv formulas =
let typeCheckHelper acc key value = ...
in (Map.foldlWithKey typeCheckHelper True formulas)

Where the typeCheckHelper will check type check one formula, and combine the result with the existing accumulator.

Let’s get some of the easy cases in the typeCheckHelper out of the way. First, if the accumulator is already False,
then it really doesn’t matter whether any other formulas type check! We already found one thing that fails. So we
can use value-based pattern matching to handle that case:

typeCheck tenv formulas =
let typeCheckHelper False _ _
typeCheckHelper True key value
in (Map.foldlWithKey typeCheckHelper True formulas)

False

Now, the value here is either Nothing, or (Just formula). We can again use pattern matching to handle these
cases. In the case that we don’t have a formula, then there is no formula to type check and we can automatically go
on to the next formula:

typeCheck tenv formulas =
let typeCheckHelper False _ _ = False
typeCheckHelper True key Nothing True
typeCheckHelper True key (Just formula)
in (Map.foldlWithKey typeCheckHelper True formulas)

In that last case, we will want to call typeCheckFormula. But first, we need to find the annotated type of key in
tenv. Since Map.lookup key tenv returns the Haskell type Maybe Type, we need to do some more pattern matching:

typeCheck tenv formulas =
let typeCheckHelper False _ _
typeCheckHelper True key Nothing

False
True

typeCheckHelper True key (Just formula) =
case (Map.lookup key tenv) of
Just ctype —> typeCheckFormula formula ctype tenv
Nothing -> False -- thts shouldn't happen
in (Map.foldlWithKey typeCheckHelper True formulas)

And we’re done!

Map

One way is to use Map.mapWithKeys to check each formula. This function has the following type signature, meaning
that its return value will be a Map of some kind. We would like the values in this returned map to be booleans
representing whether type checking succeeded or not:

Map.mapWithKey :: (k -> a => b) -> Map k a -> Map k b

We’ll need a piece of code like this:

boolMap = Map.mapWithKey func formulas -- we still need to define "func'”.
The type signature of func needs to be

func :: String -> Formula -> Bool

Now, this function needs to call typecheckFormula somewhere inside. In order to call typecheckFormula, we need
as arguments

1. the formula — which we almost have
2. the annotated return type in tenv — which we will need to look up.
3. the tenv itself — which means that func needs to be defined where tenv is in scope.

Here is an attempt that will not work:

WRONG_typeCheck tenv formulas =
let func key formula = typeCheckFormula formula (Map.lookup key tenv) tenv
boolMap = Map.mapWithKey func formulas
in ...todo...

The reason is that typeCheckFormula expects an argument with the Haskell type Type as the second ar-
gument, not the Haskell type Maybe Type. The fix is a combination of pattern matching, like in the FAQ
https://piazza.com/class/kOcr2ylpbxq3me?cid=374

typeCheck tenv formulas =
let func key Nothing = True —-- there is no formula to type check
func key (Just formula) = -- there is a formula to check
case (Map.lookup key tenv) of
Just ctype —> typeCheckFormula formula ctype tenv

Nothing -> False -— 1f the key doesn't exist in tenv
boolMap = Map.mapWithKey func formulas
boolValues = Map.elems boolMap —- eziract the values
in and boolValues -— check if all booleans are True

	A. Start with the ideas
	B. Type checking a single formula
	C. Combining the results of type checking each formula
	Foldl
	Map

