
CSC321 Tutorial 6: Optimization and Convolutional Neural Networks

In lecture 5, we talk about different issues that may arise when training an artificial neural network. Today, we’ll
explore some of these issues, and explore different ways that we can optimize a neural network’s cost function.

In lecture 6, we will cover convolutional neural networks. Since this is the last tutorial before reading week, we will
also train some CNN’s today. If you are in the Tuesday lecture section, don’t worry! Think of CNN’s as a neural
network with a slightly different architecture, or that the weights are “wired” differently. These weights (parameters)
still can be optimized via gradient descent, and we will still use the back-propagation algorithm.

Please note that because there is stochasticity in the way we initalize the neural network weights, so we will get
different results (final training/validation accuracies) if we run the initialization + training multiple times. You will
need to run some of the provided code multiple times to make a conclusion about what optimization methods work
well.

import matplotlib.pyplot as plt
import math
import torch
import torch.nn as nn
import torch.optim as optim

%matplotlib inline

Data

We’ll use the MNIST data set, the same data set that we introduced in Tutorial 4. The MNIST dataset contains
black and white, hand-written (numerical) digits that are 28x28 pixels large. As in tutorial 4, we’ll only use the first
2500 images in the MNIST dataset. The first time you run this code, we will download the MNIST dataset.

from torchvision import datasets, transforms

mnist_train = datasets.MNIST('data',
train=True,
download=True,
transform=transforms.ToTensor())

mnist_train = list(mnist_train)[:2500]

mnist_train, mnist_val = mnist_train[:2000], mnist_train[2000:]

Models in PyTorch

We’ll work with two models: a MLP and a convolutional neural network.

# Multi-layer perceptron
class MLP(nn.Module):

def __init__(self, num_hidden):
super(MLP, self).__init__()
self.layer1 = nn.Linear(28 * 28, num_hidden)
self.layer2 = nn.Linear(num_hidden, 10)
self.num_hidden = num_hidden

def forward(self, img):
flattened = img.view(-1, 28 * 28) # flatten the image
activation1 = self.layer1(flattened)
activation1 = torch.relu(activation1)
activation2 = self.layer2(activation1)
return activation2
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# You should understand this after Lecture 6
class CNN(nn.Module):

def __init__(self):
super(CNN, self).__init__()
self.conv1 = nn.Conv2d(in_channels=1,

out_channels=4,
kernel_size=3,
padding=1)

self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(in_channels=4,

out_channels=8,
kernel_size=3,
padding=1)

self.fc = nn.Linear(8 * 7 * 7, 10)
def forward(self, x):

x = self.pool(torch.relu(self.conv1(x)))
x = self.pool(torch.relu(self.conv2(x)))
x = x.view(-1, 8 * 7 * 7)
return self.fc(x)

One way to gauge the “complexity” or the “capacity” of the neural network is by looking at the number of parameters
that it has.

def print_num_parameters(model, name="model"):
print("Number of parameters in %s" % name,

sum(p.numel() for p in model.parameters()))

print_num_parameters(MLP(200), "MLP(200)")
print_num_parameters(CNN(), "the CNN")

Training the neural network

We’ll use a fairly configurable training training function that computes both training and validation accuracy in each
iteration. This is more

def train(model, data, batch_size=64, weight_decay=0.0,
optimizer="sgd", learning_rate=0.1, momentum=0.9,
data_shuffle=True, num_epochs=10):

# training data
train_loader = torch.utils.data.DataLoader(data,

batch_size=batch_size,
shuffle=data_shuffle)

# loss function
criterion = nn.CrossEntropyLoss()
# optimizer
assert optimizer in ("sgd", "adam")
if optimizer == "sgd":

optimizer = optim.SGD(model.parameters(),
lr=learning_rate,
momentum=momentum,
weight_decay=weight_decay)

else:
optimizer = optim.Adam(model.parameters(),

lr=learning_rate,
weight_decay=weight_decay)

# track learning curve
iters, losses, train_acc, val_acc = [], [], [], []
# training
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n = 0 # the number of iterations (for plotting)
for epoch in range(num_epochs):

for imgs, labels in iter(train_loader):
if imgs.size()[0] < batch_size:

continue

model.train() # annotate model for training
out = model(imgs)
loss = criterion(out, labels)
loss.backward()
optimizer.step()
optimizer.zero_grad()

# save the current training information
iters.append(n)
losses.append(float(loss)/batch_size) # compute *average* loss
train_acc.append(get_accuracy(model, train=True)) # compute training accuracy
val_acc.append(get_accuracy(model, train=False)) # compute validation accuracy
n += 1

# plotting
plt.title("Learning Curve")
plt.plot(iters, losses, label="Train")
plt.xlabel("Iterations")
plt.ylabel("Loss")
plt.show()

plt.title("Learning Curve")
plt.plot(iters, train_acc, label="Train")
plt.plot(iters, val_acc, label="Validation")
plt.xlabel("Iterations")
plt.ylabel("Training Accuracy")
plt.legend(loc='best')
plt.show()

print("Final Training Accuracy: {}".format(train_acc[-1]))
print("Final Validation Accuracy: {}".format(val_acc[-1]))

And of course, we need the get_accuracy helper function. To turn the probabilities into a discrete prediction, we
will take the digit with the highest probability. Because of the way softmax is computed, the digit with the highest
probability is the same as the digit with the (pre-activation) output value.

def get_accuracy(model, train=False):
if train:

data = torch.utils.data.DataLoader(mnist_train, batch_size=4096)
else:

data = torch.utils.data.DataLoader(mnist_val, batch_size=1024)

model.eval() # annotate model for evaluation
correct = 0
total = 0
for imgs, labels in data:

output = model(imgs) # We don't need to run torch.softmax
pred = output.max(1, keepdim=True)[1] # get the index of the max log-probability
correct += pred.eq(labels.view_as(pred)).sum().item()
total += imgs.shape[0]

return correct / total
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Let’s see what the training curve of a multi-layer perceptron looks like. This code will take a couple minutes to run. . .

model = MLP(50)
train(model, mnist_train, learning_rate=0.1)

MLP Hidden Unit Size

The first thing we’ll explore is the hidden unit size. If we increase the number of hidden units in a MLP, we’ll increase
its parameters counts.

print_num_parameters(MLP(50), "MLP with 50 hidden units")
print_num_parameters(MLP(100), "MLP with 100 hidden units")
print_num_parameters(MLP(200), "MLP with 200 hidden units")

With more hidden units, our model has more “capacity”, and can learn more intricate patterns in the training data.
Our training accuracy will therefore be higher. However, the computation time for training and using these networks
will also increase.

Adding more parameters tend to widen the gap between training and validation accuracy. As we add too many
parameters, we could overfit. However, we won’t show that here since the computations will take a long time.

model = MLP(100)
train(model, mnist_train, learning_rate=0.1)

A smaller network will train faster, but may have worse training accuracy. Bear in mind that since the neural networks
initialization is random, k/

model = MLP(30)
train(model, mnist_train, learning_rate=0.1)

Interlude: shuffling the dataset

What if don’t off data_shuffle? That is, what if we use the same mini-batches across all of our epochs? Can you
explain what’s going on in this learning curve?

model = MLP(30)
train(model, mnist_train, learning_rate=0.1, data_shuffle=False)

Conv Net

The learning curve for the convolutional network looks similar. This network is a lot more compact with much fewer
parameters. The computation time is a bit longer than training MLPs, but we get fairly good results. (The learning
rate of 0.1 looks a little high for this CNN, based on the noisiness of the learning curves.)

model = CNN()
print_num_parameters(model, "the CNN")
train(model, mnist_train, batch_size=64, optimizer="sgd", learning_rate=0.1,

momentum=0., num_epochs=5)

Momentum

We’ll mainly experiment with the MLP(30) model, since it trains the fastest. We’ll measure how quickly the model
trains by looking at how far we get in first 3 epochs of training. Here’s how far our model gets without using
momenutm, with a learning rate of 0.1.

model = MLP(30)
train(model, mnist_train, learning_rate=0.1, momentum=0., num_epochs=3)
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With a well-tuned learning-rate and momentum parameter, our training can go faster. (Note: We had to try a few
settings before finding one that worked well, and encourage you to try different combinations of the learning rate and
momentum. For example, learning rate of 0.1 and momentum of

model = MLP(30)
train(model, mnist_train, learning_rate=0.05, momentum=0.9, num_epochs=3)

The optimizer Adam works well and is the most popular optimizer nowadays. Adam typically requires a smaller
learning rate: start at 0.001, then increase/decrease as you see fit. For this example, 0.005 works well.

model = MLP(30)
train(model, mnist_train, optimizer="adam", learning_rate=0.005, num_epochs=3)

Convnets can also be trained using SGD with momentum or with Adam. In particular, our CNN generalizes very well.
(Since our validation accuracy is about equal to our training accuracy, we can afford to increase the model capacity if
we want to.)

model = CNN()
train(model, mnist_train, optimizer="adam", learning_rate=0.005, num_epochs=3)

# Uncomment to run
# train(CNN(), mnist_train, learning_rate=0.1, momentum=0.9, num_epochs=3)

Batch Normalization

Batch normalization speeds up training significantly!

class MLPBN(nn.Module):
def __init__(self, num_hidden):

super(MLPBN, self).__init__()
self.layer1 = nn.Linear(28 * 28, num_hidden)
self.bn = nn.BatchNorm1d(num_hidden)
self.layer2 = nn.Linear(num_hidden, 10)
self.num_hidden = num_hidden

def forward(self, img):
flattened = img.view(-1, 28 * 28) # flatten the image
activation1 = self.layer1(flattened)
activation1 = torch.relu(activation1)
activation1 = self.bn(activation1)
activation2 = self.layer2(activation1)
return activation2

mlp_bn = MLPBN(30)
train(mlp_bn, mnist_train, optimizer="adam", learning_rate=0.005, num_epochs=3)

There is a debate as to whether the batch-normalization should be applied before or after the activation. The original
batch normalization paper applied the normalization before the ReLU activation, but applying normalization after
the ReLU performs better in practice.

I (Lisa) believe the reason to be as follows:

1. If we apply normalization before ReLU, then we are effectively ignoring the bias parameter of those units, since
those unit’s activations gets centered anyways.

2. If we apply normalization after ReLU, we will have both positive and negative information being passed to the
next layer.

class MLPBNBeforeReLu(nn.Module):
def __init__(self, num_hidden):

super(MLPBNBeforeReLu, self).__init__()
self.layer1 = nn.Linear(28 * 28, num_hidden)
self.bn = nn.BatchNorm1d(num_hidden)
self.layer2 = nn.Linear(num_hidden, 10)

5



self.num_hidden = num_hidden
def forward(self, img):

flattened = img.view(-1, 28 * 28) # flatten the image
activation1 = self.layer1(flattened)
activation1 = self.bn(activation1)
activation1 = torch.relu(activation1)
activation2 = self.layer2(activation1)
return activation2

train(MLPBNBeforeReLu(30), mnist_train, optimizer="adam", learning_rate=0.005, num_epochs=3)

Batch normalization can be used in CNNs too.

class CNNBN(nn.Module):
def __init__(self):

super(CNNBN, self).__init__()
self.conv1 = nn.Conv2d(in_channels=1,

out_channels=4,
kernel_size=3,
padding=1)

self.bn1 = nn.BatchNorm2d(4) # num out channels
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(in_channels=4,

out_channels=8,
kernel_size=3,
padding=1)

self.bn2 = nn.BatchNorm2d(8) # num out channels
self.fc = nn.Linear(8 * 7 * 7, 10)

def forward(self, x):
x = self.bn1(torch.relu(self.conv1(x)))
x = self.pool(x)
x = self.bn2(torch.relu(self.conv2(x)))
x = self.pool(x)
x = x.view(-1, 8 * 7 * 7)
return self.fc(x)

train(CNNBN(), mnist_train, optimizer="adam", learning_rate=0.005, num_epochs=3)

Weight Initialization

If we initialize weights to zeros, our neural network will be stuck in a saddle point. Since we are using stochastic
gradient descent, we will see only noise in the training curve and no progress.

model = MLP(30)
for p in model.parameters():

nn.init.zeros_(p)
train(model, mnist_train, optimizer="adam", learning_rate=0.005, num_epochs=3)
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