CSC321 Tutorial 4: Multi-Class Classification with PyTorch

In this tutorial, we’ll go through an example of a multi-class linear classification problem using PyTorch.

Training models in PyTorch requires much less of the kind of code that you are required to write for project 1.
However, PyTorch hides a lot of details of the computation, both of the computation of the prediction, and the
computation of the gradients. In your later projects, you’ll work with both numpy to understand deeply how your
models actually work, but also learn PyTorch to gain practical skills in building machine learning models.

In the process, we will:

o Introduce the MNIST dataset, which contains 28x28 pixel images of hand-written digits
o Introduce how to use of PyTorch to build and train models
o (If we have time) explore the effect of certain settings on our model:

— Data set size

— Batch size

— Regularization

Jmatplotlib inline

Data

The MNIST dataset contains black and white, hand-written (numerical) digits that are 28x28 pixels large. This is a
data set that is typically used for demonstrations of machine learning models, and as a first data set to test new
types of models.

We will download the dataset. For simplicity, we’ll only use the first 2500 images in the MNIST dataset. The first
time you run this code, we will download the MNIST dataset.

from torchvision import datasets
load the training data

mnist_train = datasets.MNIST('data', train=True, download=True)
mnist_train = list(mnist_train) [:2500]

print (mnist_train[0])
Let’s take a look at some of the data:

plot the first 18 images in the training data
import matplotlib.pyplot as plt
for k, (image, label) in enumerate(mnist_train[:18]):
plt.subplot(3, 6, k+1)
plt.imshow(image, cmap='gray')

PyTorch has code written for us to convert an image into numerical pixel features. The tensor still preserves the 2D
geometry of the image (we still get a 1x28x28 shape) and does not yet flatten the image into a vector (to get a 1x784
shape) like we discussed in lecture.

from torchvision import transforms
transform the image data type to a 28z28 matriz of numbers
img_to_tensor = transforms.ToTensor ()

convert the last image we saw into a tensor
img_tensor = img_to_tensor (image)
img_tensor.shape

If we want to convert the entire dataset into these tensor representations (as opposed to PIL.Image objects), there is
a transform parameter that we can use when loading the MNIST dataset:

mnist_train = datasets.MNIST('data', train=True, transform=img_to_tensor)
mnist_train = list(mnist_train) [:2500]
print (mnist_train[0])

Now, we’ll split this data into training and validation, and start to build our model. We won’t need a test set for this
tutorial, but in general we will also have a test set.

mnist_train, mnist_val = mnist_train[:2000], mnist_train[2000:]

Linear Model in PyTorch

To build a linear model in PyTorch, we create an instance of the class nn.Linear, and specify the number of input
features, and the number of output features. For linear regression and binary classification, the number of output
features is 1. For multi-class classification, we have as many outputs as there are classes.

When using this model for classification, we’ll need to apply the sigmoid or softmax activiation afterwards. That is,
this object is only meant to handle the linear part of the model computation.

import torch
import torch.nn as nn

example_model = nn.Linear(50, 1) # assume 50 features, 1 linear output

The example_model object contains weights and biases of the model. By default, PyTorch initializes these values to
a random number close to O:

weight, bias = list(example_model.parameters())
print(weight)

print(weight.shape)

print(bias)

print(bias.shape)

If we create a new model, those initial parameters will change:

example_model = nn.Linear(50, 1)
weight, bias = list(example_model.parameters())

These walues should be different from above
print(weight)

print(weight.shape)

print(bias)

print(bias.shape)

Now, let’s create the actual model that we will train to solve the MNIST digit classification problem. How many
input features do we have? How many output features do we need?

model = nn.Linear(784, 10) # 78/ = 28%28

Let's wertfy that the shapes of the weights and biases are what we expect
weight, bias = list(model.parameters())

print(weight.shape)

print(bias.shape)

Making Predictions

Let’s see how we can make a prediction with this model. (You might find it strange that we’re talking about how to
make predictions before talking about how to train the model. The reason is that we will always train the model
using a varient of gradient descent. So you can imagine that the weights of this model will eventually become more
meaningful than it is now)

We'll start with the simpler example_model first. The way that we make predictions is by starting with an input
x that has the required shape. Since example_model is just an example, we’ll create a tensor with the appropriate
shape, filled with random values.

x = torch.randn(50) # create a rank 1 tensor (vector) with 50 features
x.shape

To make predictions, we apply the example_model as if it is a function, with the inputs as an argument:

y = example_model (x)
y.shape

If this model was used for binary classification, we might also need to apply the sigmoid function:
torch.sigmoid(example_model(x))

One nice thing about PyTorch is that it vectorizes and parallelizes the computation for us. So, if we had a batch of 32
inputs that we want to make predictions for, we can perform that computation using a single call:

x = torch.randn([32, 50]) # a stack of 32 inputs
print(x.shape)

y = example_model (x)

print(y.shape)

(Note: The order of the dimensions in our input x matters. The batch size always goes first, and the number of
features always goes second)

Now, let’s try and make some “predictions” with our MNIST model! We still have the variable image_tensor from
earlier:

img_tensor.shape

However, the shape of this tensor is not what we need it to be. We need to flatten the image into either a rank 1
tensor (with shape [784]) or a rank 2 tensor (with shape [1, 784]). We’ll choose the latter, so that the transition to
passing multiple images at the same time is easier:

X = img_tensor.view(l, 784)
print (x.shape)

z = model(x)

print(z)

print (z.shape)

y = torch.softmax(z, dim=1)
print (y)

The dim=1 in the softmax tells PyTorch which dimension represents different images, and which one represents the
different class labels. We want our outputs y to be a probability distribution across the classes, and not the different
images.

Loss Function

In order for the network to be useful, we need to actually train it, so that the weights are actually meaningful,
non-random values. As we mentioned before, we’ll use the network to make predictions, then compare the predictions
agains the ground truth via the loss function.

PyTorch has standard loss functions that we can use: for example, nn.BCEWithLogitsLoss () for a binary-classification
problem, and a nn.CrossEntropyLoss() for a multi-class classification problem like ours.

criterion = nn.CrossEntropyLoss()

This criterion can also be called as a function. It takes the logit prediction and ground-truth as parameters, and
returns the loss. Two things to keep in mind for this function:

1. Loss functions like this usually takes the logit as parameter, rather than the post-softmax probability distribu-
tions. This is for numerical stability.
2. This loss function also takes the ground-truth integer index as a parameter, rather than a one-hot vector.

loss = criterion(y, torch.Tensor([8]).long()) # digit 8 = the 8-th class
print(loss)

Optimization and Weight Decay

PyTorch also computes derivatives for us using automatic differentiation, which we (might) talk about in this course.
In short, we can specify an optimizer (like Stochastic Gradient Descent), and use the optimizer to determine how to
update the weights.

import torch.optim as optim
optimizer = optim.SGD(model.parameters(), 1lr=0.005) # lr = learning rate

There are three lines of code required to perform

a gradient descent update:

loss.backward() # compute updates for each parameter
optimizer.step() # make the updates for each parameter
optimizer.zero_grad() # o clean up step for PyTorch

We can also use weight decay (L2 regularization) in PyTorch through the optimizer:

optimizer = optim.SGD(model.parameters(), 1lr=0.005, weight_decay=0.01)

Batching

PyTorch data loader also does batching for us!

train_loader = torch.utils.data.Dataloader (mnist_train,
batch_size=32, # batch size
shuffle=True) # shuffle before each epoch

for (xs, ts) in enumerate(train_loader):
print(xs) # image pizels
print(ts) # targets
break

Try changing the batch_size above

Putting it all together...

def run_gradient_descent (model,
batch_size=64,
learning_rate=0.01,
weight_decay=0,
num_epochs=10) :
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=learning rate, weight_decay=weight_decay)

iters, losses = [], []
iters_sub, train_acc, val_acc = [1, [1 ,[]

train_loader = torch.utils.data.Dataloader(
mnist_train,
batch_size=batch_size,
shuffle=True)

training

n = 0 # the number of iteratiomns
for epoch in range(num_epochs):
for xs, ts in iter(train_loader):

if len(ts) != batch_size:

continue
xs = xs.view(-1, 784) # flatten the image. The -1 is a wildcard
zs = model(xs)
loss = criterion(zs, ts) # compute the total loss
loss.backward() # compute updates for each parameter
optimizer.step() # make the updates for each parameter
optimizer.zero_grad() # a clean up step for PyTorch

save the current training information
iters.append(n)
losses.append(float(loss) /batch_size) # compute *average* loss

if n % 10 ==
iters_sub.append(n)
train_acc.append(get_accuracy(model, mnist_train))
val_acc.append(get_accuracy(model, mnist_val))

increment the iteration number

n+=1

plotting

plt.title("Training Curve (batch_size={}, lr={})".format(batch_size, learning_rate))
plt.plot(iters, losses, label="Train")

plt.xlabel("Iterations")

plt.ylabel("Loss")

plt.show()

plt.title("Training Curve (batch_size={}, lr={})".format(batch_size, learning_rate))
plt.plot(iters_sub, train_acc, label="Train")

plt.plot(iters_sub, val_acc, label="Validation")

plt.xlabel("Iterations")

plt.ylabel("Accuracy")

plt.legend(loc="'best')

plt.show()

return model

def get_accuracy(model, data):
loader = torch.utils.data.Dataloader(data, batch_size=500)

correct, total = 0, O
for xs, ts in loader:
xs = xs.view(-1, 784) # flatten the image
zs = model(xs)
pred = zs.max(l, keepdim=True) [1] # get the index of the max logit
correct += pred.eq(ts.view_as(pred)).sum().item()
total += int(ts.shape[0])
return correct / total

Let’s try training this model!

model = nn.Linear(784, 10)
run_gradient_descent(model, batch_size=64, learning rate=0.01, num_epochs=10)

Things to try:

e Changing the batch size

e Changing the weight decay parameter

o Reduce the size of the training set (+ weight decay)
o Changing the learning rate (for your project)

	CSC321 Tutorial 4: Multi-Class Classification with PyTorch
	Data
	Linear Model in PyTorch
	Making Predictions
	Loss Function
	Optimization and Weight Decay
	Batching
	Putting it all together…
	Things to try:

