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Agenda

I Generative Adversarial Networks
I Course Evaluation



Exam Logistics

We’re still working on the exam logistics, here’s what we currently
have in mind:

I Exam paper will be downloadable on April 16th (most likely via
a link on Markus). There will be different versions of the exam

I We will log the time that you access your exam script
I We will expect you save your exam script locally and cut

internet
I You will have 2 hours to write the exam (e.g. on a piece of

paper, type your answers . . . )
I You will write a declaration stating the time you start/complete

the exam, and that you did not use any unauthorized aid
I You will have 30 minutes to upload your solutions



Mock Exam

We’ll hold a 30 minute mock exam available between April 9th-April
11th.

I Download the exam script (e.g. from the link on Markus)
I We will log the time that you access your exam script (you

won’t see this)
I The mock test should take ~30 minutes
I Upload your solutions on Markus



Exam Review Sessions and Office Hours

Student-run review sessions:

https://docs.google.com/spreadsheets/d/1jBhAVD-
Miux7GBiPrDZXT_vPFPv6kSsTh6_aJjHd678/edit#gid=0

Instructor Exam Office Hours (Starting April 6th):

I Lisa: MWF 4:00pm-5:00pm (but will cut short if there are no
questions)

I Pouria: TTh 12:00pm-1:00pm (but will cut short if there are
no questions)



CSC321 Social: Evening of Go

Learn Go with Lisa: Friday, April 3rd, 4pm-5pm on Bb Collaborate

AlphaGo Documentary:
https://www.youtube.com/watch?v=WXuK6gekU1Y

AlphaGo/Reinforcement Learning Discussions: Friday, April
3rd, 8pm-9pm



CSC321 “Exam Jam”

Is there interest in having something on April 3rd or 4th?



Generative Adversarial Networks



Supervised vs Unsupervised Learning

From lecture 1:

I Supervised Learning: learning a function that maps an input
to an output based on example input-output pairs

I Unsupervised Learning: learning the structure of some
(unlabelled) data

Question:

Is the tweet generation task from Tutorial 11 a supervised or
unsupervised learning problem?



Example

Q: Are these supervised or unsupervised learning task?

I Task 1: Predict the next word given all the previous words in a
“happy tweet”

I Task 2: Generate a new “happy tweet”

Task 1 is supervised, and is an example of a discriminative model

Task 2 is unsupervised, and is an example of a generative model.
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Generative Model

I A generative model learns the structure of a set of input
data, and can be used to generate new data

I Examples:
I Autoencoders
I RNN for text generation



Autoencoders uses MSELoss

I Blurry images, blurry backgrounds
I Why? Because the loss function used to train an autoencoder

is the mean square error loss (MSELoss)
I To minimize the MSE loss, autoencoders predict the “average”

pixel

Can we use a better loss function?



Generative Adversarial Network

I Generator network: try to fool the discriminator by
generating real-looking images

I Discriminator network: try to distinguish between real and
fake images

The loss function of the generator (the model we care about) is
defined by the discriminator!



GAN Generator

I Generator Input: a random noise vector (Q: Why do we need
to input noise?)

I Generator Output: a generated image



GAN Architecture

I Discriminator Input: an image
I Discriminator Output: a binary label (real vs fake)



GAN Loss function notation

Discriminator:

I D – the discriminator neural network
I θ – the trainable parameters of the discriminator (we’ll write

Dθ if we want to make the dependency clear)
I x – an image (either real or fake)
I D(x) or Dθ(x) – the discriminator’s determination of whether

the image is real (1 = real, 0 = fake)

Generator:

I G – the generator neural netowrk
I φ – the trainable parameters of the discriminator (we’ll write

Gφ if we want to make the dependency clear)
I z – a random noise vector
I G(z) or Gφ(z) – a generated image

Q: What does D(G(z)) mean?
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GAN: Optimizing the generator

Tune generator weights to:

I maximize the probability that. . .
I discriminator labels a generated image as real
I Q: What loss function should we use?

We wish to tune φ to increase Dθ(Gφ(z))

min
φ

Ez [log (1− Dθ(Gφ(z)))]
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θ
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GAN Optimization Problem

We wish to optimize

min
φ

max
θ

Ex∼D [logDθ(x)] + Ez [log (1− Dθ(Gφ(z)))]

This is called the minimax formulation since the generator and
discriminator are playing a zero-sum game against each other



Training

Alternate between:

I Training the discriminator
I Training the generator



Updating the discriminator



Updating the generator



GAN Alternating Training Visualized

Black dots is the data distribution D, green line is the generator
distribution G(z), and blue dotted line is the discriminator:

1. The distributions G(z) and D are quite different
2. The discriminator is updated to be able to better distinguish

real vs fake
3. The generator is updated to be better match D
4. If training is successful, G(z) is indistinguisable from D



A better cost function

I We introduced the minimax cost function for the generator:

min
φ

Ez [log (1− Dθ(Gφ(z)))]

I One problem with this loss function is saturation
I Recall from classification. When the prediction is really wrong

I “Logistic + square error” gets a weak gradient signal
I “Logistic + cross-entropy” gets a strong gradient signal

I Here, if the generated sample is really bad, the discriminator’s
prediction is close to 0, and the generator’s cost is flat



A better generator cost function

Original minimax cost:

min
φ

Ez [log (1− Dθ(Gφ(z)))]

Modified generator cost:

min
φ

Ez [− logDθ(Gφ(z))]



Caveat before demo

I Can work very well and produces crisp, high-res images, but
difficult to train!

I Difficult to numerically see whether there is progress
I Plotting the “training curve” (discriminator/generator loss)

doesn’t help much
I Takes a long time to train (a long time before we see progress)
I To make the GAN train faster, we’ll use:

I LeakyReLU Activations instead of ReLU
I Batch Normalization (later)



GAN: Discriminator

class Discriminator(nn.Module):
def __init__(self):

super().__init__()
self.model = nn.Sequential(

nn.Linear(28*28, 300),
nn.LeakyReLU(0.2, inplace=True),
nn.Linear(300, 100),
nn.LeakyReLU(0.2, inplace=True),
nn.Linear(100, 1))

def forward(self, x):
x = x.view(x.size(0), -1)
out = self.model(x)
return out.view(x.size(0))



Leaky Relu activation

Like a relu, but “leaks” data:

I f (x) = x if x >= 0
I f (x) = αx if x < 0

Reason:

I Always have some information pass through in the forwards
pass

I Always have some information pass back in the backwards pass
I Better weight updates during the backwards pass



GAN: Generator

class Generator(nn.Module):
def __init__(self):

super().__init__()
self.model = nn.Sequential(

nn.Linear(100, 300),
nn.LeakyReLU(0.2, inplace=True),
nn.Linear(300, 28*28),
nn.Sigmoid())

def forward(self, x):
out = self.model(x).view(x.size(0), 1, 28, 28)
return out



Training the Discriminator

#images = batch of images
#batch_size = images.size(0)
noise = torch.randn(batch_size, 100)
fake_images = generator(noise)
inputs = torch.cat([images, fake_images])
labels = torch.cat([torch.zeros(batch_size)), # real

torch.ones(batch_size)]) # fake
d_outputs = discriminator(inputs)
d_loss = criterion(d_outputs, labels)

Note: The labels (real=0, fake=1) are opposite from our
mathematical derivation. This version turns out to perform
better



Training the Generator

noise = torch.randn(batch_size, 100)
fake_images = generator(noise)
outputs = discriminator(fake_images)
generator.zero_grad()
g_loss = criterion(outputs, torch.zeros(batch_size))

(Labels: real=0, fake=1)



Let’s look at the code!



GAN: Interpolation in z

Radford et al. (2016) https://arxiv.org/pdf/1511.06434.pdf



GAN: Vector Arithmetics in z

Radford et al. (2016) https://arxiv.org/pdf/1511.06434.pdf



GAN Samples (2019)

IMageNet object categories (by BigGAN, a much larger model, with
a bunch more engineering tricks)

Brock et al., 2019. Large scale GAN training for high fidelity natural image synthesis



Mode Collapse

We don’t actually know how well a GAN is modelling the
distribution. One prominent issue is mode collapse

I The word “Mode” means “average”
I GAN model learns to generate one type of input data (e.g. only

digit 1)
I Generating anything else leads to detection by discriminator
I Generator gets stuck in that local optima



Balance between Generator and Discriminator

If the discriminator is too good, then the generator will not learn
due to saturation:

I Remember that we are using the discriminator like a “loss
function” for the generator

I If the discriminator is too good, small changes in the generator
weights won’t change the discriminator output

I If small changes in generator weights make no difference, then
we can’t incrementally improve the generator



Wasserstein GAN (not on exam)

Idea: Use a different loss function.

Arjovsky et al. (2017) Wasserstein GAN. https://arxiv.org/abs/1701.07875

I Use the Wasserstein distance between the generator
distribution and the data distribution

I Reduces mode collapse, better measurement of progress



Style Transfer with Cycle GAN

Style transfer problem: change the style of an image while
preserving the content.

Data: Two unrelated collections of images, one for each style



Cycle GAN Idea

I If we had paired data (same content in both styles), this would
be a supervised learning problem. But this is hard to find.

I The CycleGAN architecture learns to do it from unpaired data.
I Train two different generator nets to go from style 1 to style 2,

and vice versa.
I Make sure the generated samples of style 2 are indistinguishable

from real images by a discriminator net.
I Make sure the generators are cycle-consistent: mapping from

style 1 to style 2 and back again should give you almost the
original image.



Cycle GAN Architecture



Cycle GAN: Aerial photos and maps



Cycle GAN: Road scenes and semantic segmentation



Course Evaluations
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