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Agenda

I GloVe: Word Embeddings Revisisted
I Recurrent Neural Networks for Classification
I Gradient Explosion and Vanishing
I Long Short-Term Memory



Course Continuity FAQ

1. What will happen to lectures, tutorials, and office hours?

They will all be held online on Quercus. They will be recorded
whenever possible.

2. What will happen to the final exam?

We’re still working with the department to figure out what to do.
For now, you should study as if there will be a final exam.

3. I need accommodations due to recent events or due to the
course being moved online.

Please email Lisa, so we can try our best to help you learn machine
learning.



I need help

Please reach out to Lisa if you need help! I’m happy to discuss
individually (online) about your situation, or about the course
material if you can’t make office hours.

Emergency Assistance Grants (just announced yesterday):

https://future.utoronto.ca/finances/financial-aid/emergency-
assistance-grants/



Other Updates

I Remark requests are delayed
I Homework 4 will be graded early next week
I Project 3 is due soon
I Homework 5 released
I Project 4 will be released soon



Word Embeddings Revisisted (GloVe)



Why use word embeddings?
Recall this example of a discriminative RNN from the last class:

How should we represent each input x(t)?



Representing Inputs

Idea 1: Use one-hot encodings to represent each x (t)

If we were representing a sentence using a sequence of characters,
then one-hot encodings could work.

However, there are tens of thousands of words in the English
language!

Why is this a problem? (Hint: overfitting)



Using Word Embeddings

Idea 2: Learn word embeddings, or low-dimensional vector
representations of words.

We could do this in two ways:

I Learn the word embeddings at the same time as our recurrent
neural network

I Forward pass includes word embedding lookup, RNN
computation, prediction computation, and loss computation

I Compute the derivatives of the loss with respect to the word
embeddings, as in any other network

I Use pre-trained word embeddings
I Like the ones we trained in Project 2!



GloVe Embeddings

GloVe: Global Vectors for Word Representation

https://nlp.stanford.edu/projects/glove/

Most commonly used pre-trained word embeddings nowadays

The training of GloVe is a bit different from how we trained our
word embeddings in P2



Project 2 Word Embeddings
Low-dimensional word embedding trained on the task of predicting
the next word given the previous 3 words.



GloVe Embedding Training

Key insight: The co-occurrence matrix of words contain
information about the semantic information (meaning) of words

In particular, the ratio of co-occurrences encodes semantic
information!

So, train word embeddings to be able to predict word
co-occurrences. (Details are omitted here, but you can read the
paper here https://nlp.stanford.edu/projects/glove/ )



GloVe Embedding Demo

Demo on Google Colab



Key idea from the Demo

I Distances are somewhat meaningful, and are based on word
co-occurences

I the words “black” and “white” will have similar embeddings
because they co-occur with similar other words.

I “cat” and “dog” is more similar to each other than “cat” and
“kitten” because the latter two words occur in different contexts!

I Word Analogies: Directions in the embedding space can be
meaningful

I “king” - “man” + “woman” ≈ “queen”
I Bias in Word Embeddings (and Neural Networks in General)

I neural networks pick up pattern in the data
I these patterns can be biased and discriminatory



Bias and Fairness

Word embeddings are inherently biased because there is bias in the
training data.

Neural networks learn patterns in the training data, so if the training
data contains human biases, then so will the trained model! This
effect was seen in:

I criminal sentencing (certain demographics are treated more
harshly by the trained model model)

I resume filtering
I facial recognition technology



Fairness

Suppose we want to deploy our model from Project 3 to help people
who are visually impaired.

How might our model from project 3 be unfair?



Sentiment Analysis with Recurrent Neural
Networks



Sequence Classification

Let’s build this model:



Sentiment140 Data

Dataset of tweets with either a positive or negative emoticon, but
with the emoticon removed.

Input: Tweet (sequence of words/characters)

Target: Positive or negative emoticon?

Example:

I Negative: “Just going to cry myself to sleep after watching
Marley and Me”

I Positive: “WOOOOO! Xbox is back”



Approach

I Use GloVe embeddings to represent words as input x(t) (note:
we could have chosen to work at the character level)

I Use a recurrent neural network to get a combined embedding
of the entire tweet

I Use a fully-connected layer to make predictions (happy vs sad)



Key Considerations

I We’ll be using the PyTorch nn.RNN module, which can be
unintuitive

I Batching difficulties: each tweet is a different length, so how
can we batch?

I One way is to pad shorter sequences with a special “padding”
token at the end of the sequence

I However, we want to minimize this padding due to
computational complexity

I We’ll do something simple today, and use PyTorch torchtext
later



Demo



Key Takeaways

You should be able to understand. . .

I why we want to use RNNs rather than CNN/MLP
I why/how GloVe embeddings are used in RNNs
I what the hidden state computations depend on (not the exact

computation, but the dependencies)
I which weights are shared and which weights are not
I why batching is trickier when training an RNN (compared to

training a CNN/MLP)

You don’t need to. . .

I memorize the code you saw, or the PyTorch API
I know the exact math behind RNNs



Gradient Explosion and Vanishing



RNN Gradients

Last time we saw the unrolled computation graph for a small RNN:



Backprop Through Time
Activations:

L = 1

y (t) = L ∂L
∂y (t)

r (t) = y (t) φ′(r (t))

h(t) = r (t) v + z (t+1) w

z (t) = h(t) φ′(z (t))

Parameters:

u =
∑

t

z (t) x (t)

v =
∑

t

r (t) h(t)

w =
∑

t

z (t+1) h(t)

Key idea: multivariate chain rule!



Gradient Explosion and Vanishing

The longer your sequence, the longer gap the time step between
when we see potentially important information and when we need it:

The derivatives need to travel this entire pathway.



Why Gradients Explode or Vanish
Consider a univariate version of the RNN:

Backprop updates:

h(t) = z (t+1) w

z (t) = h(t) φ′(z (t))

Applying this recursively:

h(1) = wT−1φ′(z (2)) · · ·φ′(z (T ))h(T )

With linear activations:

∂h(T )

∂h1 = wT−1

Exploding:

w = 1.1,T = 50 ⇒ ∂h(T )

∂h(1) = 117.4

Vanishing:

w = 0.9,T = 50 ⇒ ∂h(T )

∂h(1) = 0.00515



Multivariate Hidden States

More generally, in the multivariate case, the Jacobians multiply:
∂h(T )

∂h(1) = ∂h(T )

∂h(T−1) · · · ∂h(2)

∂h(1)

Matrices can “explode” or “vanish” just like scalar values, though
it’s slightly harder to make precise.

(For this course, you don’t need to know what Jacobians are; just
that the idea from the previous slide applies to the case where h is a
vector.)



Repeated Application of Functions

Another way to look at why gradients explode or vanish is that we
are applying a function over and over again.

Each hidden layer computes some function of previous hidden layer
and the current input: h(t) = f (h(t−1), x(t))

This function gets repeatedly applied:

h(4) = f (h(3), x(4))
= f (f (h(2), x(3)), x(4))
= f (f (f (h(1), x(2)), x(3)), x(4))



Iterated Functions

We get complicated behaviour from iterated functions. Consider
f (x) = 3.5x(1− x)

Note that the function values gravitate towards fixed points, and
that the derivatives becomes either very large or very small.



RNN with tanh activation

More concretely, consider an RNN with a tanh activation function:

The function computed by the network:



Cliffs

Repeatedly applying a function adds a new type possible loss
landscape: cliffs, where the gradient of the loss with respect to a
parameter is either close to 0, or very large.

Generally, the gradient will explode on some inputs and vanish on
others. In expectation, the cost may be fairly smooth.



Gradient Clipping

One solution is to “clip” the gradient so that it has a norm of at
most η. Otherwise, update the gradient g with g← η g

||g||

The gradients are biased, but at least they don’t blow up:

Gradient clipping solves the exploding gradient problem, but not the
vanishing gradient problem.



Learning Long-Term Dependencies

Idea: Initialization

Hidden units are a kind of memory. Their default behaviour should
be to keep their previous value.

If the function h(t) = f (h(t−1), x(t)) is close to the identity, then the
gradient computations ∂h(t)

∂h(t−1) are stable.

This initialization allows learning much longer-term dependencies
than “vanilla” RNNs



Long-Term Short Term Memory

Change the architectrue of the recurrent neural network by
replacing each single unit in an RNN by a “memory block”:

Two such blocks:

I LSTM: Long-Term Short Term Memory
I GRU: Gated Recurrent Units



Gating

The key idea behind these memory blocks is gating:

I A forget/write gate that computes how much information to
forget/write

I Use of sigmoid activations to obtain values between 0 and 1

Visualization:
https://colah.github.io/posts/2015-08-Understanding-LSTMs/



Demo (with GRU/LSTM)



Key Takeaways

You should be able to understand. . .

I why learning long-term dependencies is hard in a vanilla RNN
I why gradients vanish/explode in a vanilla RNN
I what cliffs are and how repeated application of a function

generates cliffs
I what gradient clipping is and when it is useful
I the idea behind gating

You do not need to know. . .

I the exact formula for how to update a vanilla RNN, LSTM, or
GRU hidden state

I what Jacobians are or how to compute them
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