
CSC321 Neural Networks and Machine Learning

Lecture 9

March 11, 2020

Agenda

I Next few tutorials
I Review autoencoder
I Optimizing the input

I Guided Backprop
I Adversarial examples

I Recurrent Neural Networks

Tutorials

I Tutorial 9: Hands-on lab on transfer learning
I Tutorial 10: Cumulative Review of weeks 4-9 materials.

Prizes!
I Tutorial 11: Hands-on lab on recurrent neural networks.

Requests?
I Tutorial 12: Review for the final exam.

Exam Jam: April 3rd, 5pm-6pm in DH2060

Review: Autoencoder

I What is the purpose of an autoencoder?
I What is the purpose of transpose convolutions in an

autoencoder?
I What happens if an autoencoder overfits?
I Why do autoencoders produce blurry images?

Optimizing the Input

Computation Graph
Recall the computation graph of a two-layer MLP:

Suppose the weights have already been trained.

From this graph, you could compute x = ∂L
∂x , but we never made

use of this.

First hour: lots of fun things you can do by running gradient
descent/ascent on the input!

Review: Feature Visualization

Review: Feature Visualization

Review: Feature Visualization

Review: Feature Visualization

Review: Feature Visualization

Feature Visualization

I Higher layers seem to pick up more abstract, high-level
information.

I Problem with looking at the region of the image that leads to
a high unit activation:

I Can’t tell what the unit is actually responding to in the image
I We may read too much into the results, e.g. a unit may detect

red, and the images that maximize its activation will all be stop
signs.

I Can use input gradients to diagnose what the unit is
responding to.

Image Gradient (for image generation?)

Can we generate images by:

1. Start with a random image
2. Use gradient descent to tune the random image, so a neural

network predicts that the image is of class (e.g. Samoyed)

Let’s see if this idea works: Demo (see posted html notes)

Nope! Classification is a much easier task than generation. These
gradients aren’t very meaningful.

Image Gradient (for image generation?)

Can we generate images by:

1. Start with a random image
2. Use gradient descent to tune the random image, so a neural

network predicts that the image is of class (e.g. Samoyed)

Let’s see if this idea works: Demo (see posted html notes)

Nope! Classification is a much easier task than generation. These
gradients aren’t very meaningful.

Image Gradient (to see which pixels would affect an
activation)

Can we learn about the input gradients of a (natural) image? (That
is, how can we make a Samoyed dog “more like a Samoyed dog”?)

I Take a network like AlexNet
I Compute the gradient of log p(y = samoyed |x)
I Visualize the gradient

Demo (see posted html notes)

The image gives some idea of where AlexNet detects “Samoyed”,
but is not that meaningful.

Image Gradient (to see which pixels would affect an
activation)

Can we learn about the input gradients of a (natural) image? (That
is, how can we make a Samoyed dog “more like a Samoyed dog”?)

I Take a network like AlexNet
I Compute the gradient of log p(y = samoyed |x)
I Visualize the gradient

Demo (see posted html notes)

The image gives some idea of where AlexNet detects “Samoyed”,
but is not that meaningful.

Why gradients are difficult to interpret

One explanation is that network tries to detect samoyeds
everywhere.

A pixel may be consistent with samoyed in one location (positive
gradient), but inconsistent with samoyed in other locations
(negative gradient).

The positive and negative gradients cancel out.

The full explanation is beyond the scope of this course.

Guided Backprop

Guided backprop is a total hack to prevent this cancellation.

Idea: Compute the backward pass, but only allow positive
gradient signals to pass through. Set all negative gradient
signals to zero.

We want to visualize what excites a given unit, not what
suppresses it!

Note: this isn’t really the gradient of anything!

Guided Backprop Examples

Other Ideas

Interpreting CNN’s is a difficult task, but there are many ideas that
people have tried:

https://github.com/utkuozbulak/pytorch-cnn-visualizations

Adversarial Examples

What are these images of?

Producing adversarial images: Given an image for one category
(e.g. panda), compute the image gradient to maximize the
network’s output unit for a different category (e.g. gibbon)

What are these images of?

Producing adversarial images: Given an image for one category
(e.g. panda), compute the image gradient to maximize the
network’s output unit for a different category (e.g. gibbon)

Non-targetted Adversarial Attack

Goal: Choose a small perturbation ε on an image x so that a neural
network f misclassifies x + ε.

Approach:

Use the same optimization process to choose ε to minimize the
probability that

f (x + ε) = correctclass

Targeted Adversarial Attack

Targeted attack

Maximize the probability that f (x + ε) = target incorrect class

Non-targeted attack

Minimize the probability that f (x + ε) = correct class

Demo (see html notes)

Adversarial Attack

I 2013: ha ha, how cute!
I The paper which introduced adversarial examples was titled
“Intriguing Properties of Neural Networks.”

I 2018+: serious security threat
I Nobody has found a reliable method yet to defend against them!
I 7 of 8 proposed defenses accepted to ICLR 2018 were cracked

within days.

White-box vs Black-box Adversarial Attacks

Adversarial examples transfer to different networks trained on a
totally separate training set!

White-box Adversarial Attack: Model architecture and weights
are known, so we can compute gradients. (What we’ve been doing
so far in the demos)

Black-box Adversarial Attack: Model architecture and weights
are unknown.

I You don’t need access to the original network!
I You can train up a new network to match its predictions, and

then construct adversarial examples for that.

Attack carried out against proprietary classification networks
accessed using prediction APIs (MetaMind, Amazon, Google)

Adversarial Examples in 3D

It is possible to have a 3D object that gets misclassified by a neural
network from all angles.

https://www.youtube.com/watch?v=piYnd_wYlT8

Printed Adversarial Examples

It is possible for a printed image to cause object detection to fail.

https://www.youtube.com/watch?v=MIbFvK2S9g8

Recurrent Neural Networks

Goal and Overview

Sometimes we’re interested in making predictions about data in the
form of sequences.

Examples:

I Given the price of a stock in the last week, predict whether
stock price will go up

I Given a sentence (sequence of chars/words) predict its
sentiment

I Given a sentence in English, translate it to French

This last example is a sequence-to-sequence prediction task,
because both inputs and outputs are sequences.

Language Model

We have already seen neural language models that make the
Markov Assumption

p(wi |w1, . . . ,wi−1) = p(wi |wi−3,wi−2,wi−1)

This means the model is memoryless, so they can only use
information from their immediate context (in this figure, context
length = 1):

Recurrent Neural Network

But sometimes long-distance context can be important.

If we add connections between the hidden units, it becomes a
recurrent neural network (RNN). Having a memory lets an RNN
use longer-term dependencies:

RNN Diagram
We can think of an RNN as a dynamical system with one set of
hidden units which feed into themselves. The network’s graph would
then have self-loops.

We can unroll the RNN’s graph by explicitly representing the units
at all time steps. The weights and biases are shared between all
time steps

Simple RNN Example: Sum

This simple RNN takes a sequence of numbers as input (scalars),
and sums its inputs.

2

2

2

w=1

w=1

-0.5

1.5

1.5

w=1

w=1

1

2.5

2.5

w=1

w=1

1

3.5

3.5

w=1

w=1

T=1 T=2 T=3 T=4

w=1 w=1 w=1

input
unit

linear
hidden

unit

linear
output

unit

w=1

w=1

w=1

Simple RNN Example 2: Comparison

This RNN takes a sequence of pairs of numbers as input, and
determines if the total values of the first or second input are larger:

input
unit
1

linear
hidden

unit

logistic
output

unit

w=5

w=1

w=1

input
unit
2

w= -1

2

4

1.00

-2

T=1

0

0.5

0.92

3.5

T=2

1

-0.7

0.03

2.2

T=3

Simple RNN Example 3: Parity

Assume we have a sequence of binary inputs. We’ll consider how to
determine the parity, i.e. whether the number of 1’s is even or odd.

We can compute parity incrementally by keeping track of the parity
of the input so far:

Parity bits: 0 1 1 0 1 1 −→
Input: 0 1 0 1 1 0 1 0 1 1

Each parity bit is the XOR of the input and the previous parity bit.

Parity is a classic example of a problem that’s hard to solve with a
shallow feed-forward net, but easy to solve with an RNN.

Parity Approach
Let’s find weights and biases for the RNN on the right so that it
computes the parity. All hidden and output units are binary
threshold units (h(x) = 1 if x > 0 and h(x) = 0 otherise).

Strategy

I The output unit tracks the current parity, which is the XOR of
the current input and previous output.

I The hidden units help us compute the XOR.

Unrolling Parity RNN

Parity Computation

The output unit should compute the XOR of the current input and
previous output:

y (t−1) x (t) y (t)

0 0 0
0 1 1
1 0 1
1 1 0

Computing Parity

Let’s use hidden units to help us compute XOR.

I Have one unit compute AND, and the other one compute OR.
I Then we can pick weights and biases just like we did for

multilayer perceptrons.

y (t−1) x (t) h(t)
1 h(t)

2 y (t)

0 0 0 0 0
0 1 0 1 1
1 0 0 1 1
1 1 1 1 0

Back Propagation Through Time

As you can guess, we don’t usually set RNN weights by hand.
Instead, we learn them using backprop.

In particular, we do backprop on the unrolled network. This is
known as backprop through time.

Unrolled BPTT

Here’s the unrolled computation graph. Notice the weight sharing.

RNN for language modelling

Usually, the sequence of inputs xt will be vectors. The hidden
states ht are also vectors.

For example, we might use a sequence of one-hot vectors xt of
words (or characters) to represent a sentence.

How would we use a RNN to determine (say) the sentiment
conveyed by the sentence?

As usual, start with the forward pass. . .

RNN: Initial Hidden State

Start with an initial hidden state with a blank slate (can be a
vector of all zeros, or a parameter that we train)

RNN: Update Hidden State

Compute the first hidden state based on the initial hidden state, and
the input (the one-hot vector x1 of the first word).

RNN: Continue Updating Hidden State

Update the hidden state based on the subsequent inputs. Note that
we are using the same weights to perform the update each time.

RNN: Last Hidden State

Continue updating the hidden state until we run out of words in our
sentence.

RNN: Compute Prediction

Use the last hidden state as input to a prediction network, usually
a MLP.

Alternative: take the max-pool and average-pool over all computed
hidden states. (Why?)

Next Time

I We’ll talk more about RNNs next week.
I It turns out that this simple “vanilla” RNN is difficult to train

due to vanishing and exploding gradients.
I Explaining and addressing this issue will take a while
I However, it will also help us understand the motivation between

convolutional architectures like Residual Networks, which use
skip connections

For now, you should be able to:

I Understand how the simple RNN examples work
I Understand the computation graph of the simple RNNs
I Be able to compute gradients for very simple RNN’s (like the

summation example)
I Have a rough idea of how RNNs can be used to for sentiment

analysis of short text

	Optimizing the Input
	Adversarial Examples
	Demo (see html notes)
	Recurrent Neural Networks

