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Agenda

I Midterm + Logistic
I Generative CNNs
I Autoencoder

Remember that homework 4 is due next week, and project 3 is
coming up!



Midterm + Logistics



Midterm

I The midterm was a little long, so we’ll grade the midterm out
of 27 instead of 30

I The adjustment is not reflect on Markus
I Markus still computes your grades ouf of 30 points instead of 27

I This brings the average to a bit above the average on Q2/Q3

We made some changes to the grading after the TAs graded on
papers to give more part marks. Markus annotations supersedes the
hand-written grading.



Term Marks

Component Median Average

Homeworks 87% 82%
Projects 85% 77%
Midterm 60% 60%

Are we overfitting? (i.e. are you trying to memorize the slides
without really understanding deeply?)



Remark Requests

Please read and follow the instructions on Quercus or Markus.

Deadline: March 9th, 9pm



Survey Feedback

Main takeaway: The tutorials aren’t really working for you, even
though we’re taking a lot of time to develop the materials.

So let’s try something else:

I Hands-on Labs?
I Exam prep questions?
I Bonus quizzes?



CNN Architecture Review



Review: AlexNet



Review: VGG



Review: Convolutional Features



What features do convolutional networks detect?

The visualization shows the patterns in the input space (pixels) that
cause the highest activation in a unit in the first conv layer.

Zeiler & Fergus (2013) Visualizing and Understanding Convolutional Networks
https://arxiv.org/pdf/1311.2901.pdf



What features do convolutional networks detect?

. . . second conv layer:



What features do convolutional networks detect?

. . . third conv layer:



What features do convolutional networks detect?

Observations:

I Higher layers look at a larger region of the image (why?)
I Higher layers detect “higher-level” features



Review: Transfer learning

Practioners rarely train a CNN “from scratch”. Instead we could:

1. Take a pre-trained CNN model (e.g. AlexNet), and use its
features network to compute image features, which we then
use to classify our own images

2. Initialize our weights using the weights of a pre-trained CNN
model (e.g. AlexNet)



Review: Fully Convolutional Networks

Fully convolutional networks do not use any fully connected layers!

Instead, use global average pooling.



Example: Pixel-wise prediction

Example: This is an example of a CNN solving a pixel-wise
prediction problem, i.e. classifying each pixel.

Image from: https://arxiv.org/pdf/1411.4038.pdf



Generating predictions

We can solve a problem like pixel-wise prediction by training a neural
network that generates an output feature map of size H × W × C .

I H × W is the size of the original image
I C is the number of classes
I We have a distribution of classes C at each pixel
I Ground truth targets are a set of H × W one-hot vectors (one

per pixel)



Architecture for pixel-wise prediction

Downsampling

I Reduce the “resolution” of the feature maps (H and W)
I Consolidate information from larger and larger regions of the

image to detect higher-level information
I Why? Because the class label of a pixel depends on its

surroundings!

Upsampling

Going backwards! Can we increase the “resolution” of the feature
maps to match the image?



What we need:

We need to be able to up-sample features, i.e. to obtain
high-resolution features from low-resolution features

I Opposite of max-pooling OR
I Opposite of a strided convolution

We need an inverse convolution – a.k.a a deconvolution or
transpose convolution.



Architectures with Transpose Convolution



Fully Convolutional Networks

In theory, this architecture can be used to make predictions for
arbitrary sized images. (Why?)



Transposes Convolutions in PyTorch

>>> x = torch.randn(2, 8, 64, 64)
>>> conv = nn.Conv2d(in_channels=8,
... out_channels=8,
... kernel_size=5)
>>> y = conv(x)
>>> y.shape

>>> convt = nn.ConvTranspose2d(in_channels=8,
... out_channels=8,
... kernel_size=5)
>>> x = convt(y)
>>> x.shape

should get the same shape back!
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Key Idea

If we have a convolution c and an transpose convolution t with the
same kernel size, then applying t(c(x)) on a tensor x will yield
another tensor with the same shape.

>>> convt(conv(x)).shape == x.shape



Inverse Convolution + Padding
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Inverse Convolution + Stride

>>> x = torch.randn(2, 8, 64, 64)
>>> conv = nn.Conv2d(in_channels=8,
... out_channels=8,
... kernel_size=5,
... stride=2)
>>> y = conv(x)
>>> y.shape
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. . . almost the same shape . . .
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Transpose Convolution Layer

Figure 1: https://www.mdpi.com/2072-4292/9/6/522/htm

More at https://github.com/vdumoulin/conv_arithmetic



Output Padding

nn.ConvTranspose2d(in_channels=8,
out_channels=8,
kernel_size=5,
stride=2,
output_padding=1) # +1 to output

# width/height



What you need to know

I We won’t ask you about transpose convolutional arithmetics
(i.e. computing the forward/backward pass of a transpose
convolutional layer)

I You should know what the trasnpose convolution setting should
be to “invert” a convolution operation (we’ll need this for
autoencoders later today)

I You should know the difference between the output_padding
and padding setting



Image Autoencoder



Image Autoencoder

An image autoencoder is a neural network used to find a
low-dimensional representation of some images. This is an
unsupervised learning task (no labels).

An image autoencoder has two components:

1. An encoder neural network that takes the image as input, and
produces a low-dimensional embedding.

2. A decoder neural network that takes the low-dimensional
embedding as input, and reconstructs the image.

Idea: A good, low-dimensional representation should allow us to
reconstruct everything about the image.
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The components of an autoencoder

Encoder:

I Input = image
I Output = low-dimensional embedding

Decoder:

I Input = low-dimensional embedding
I Output = image



Why autoencoders?

I Dimension reduction:
I find a low dimensional representation of the image

I Image Generation:
I generate new images not in the training set
I (Any guesses on how we can do this?)

Autoencoders are considered a generative model.



How to train autoencoders?

I Loss function:
I How close were the reconstructed image from the original?
I Mean Square Error Loss: look at the mean square error

across all the pixels.
I Optimizer:

I Just like before!
I Training loop:

I Just like before!



Let’s train an autoencoder for MNIST



Structure in the Embedding Space

The dimensionality reduction means that there will be structure in
the embedding space.

I The distances in the embedding space is meaningful (more
meaningful than in the input space)

I We can look at clusters in the embedding space
I We can generate



Interpolating in the Embedding Space



Generating New Images

Q: Can we pick a random point in the embedding space, and decode
it to get an image of a digit?

A: Unfortunately not necessarily. Can we figure out why not?



Autoencoder Overfitting

Overfitting can occur if the size of the embedding space is too large.

If the dimensionality of the embedding space is small, then the
neural network needs to map similar images to similar locations.

If the dimensionality of the embedding space is too large, then the
neural network can simply memorize the images!



Blurriness

Q: Why do autoencoders produce blurry images?

Hint: it has to do with the use of the MSELoss.
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