
CSC321 Neural Networks and Machine Learning

Lecture 7

February 26, 2020



Agenda

I Midterms are done, yay!
I More Convolutional Neural Networks

I Review: Conv2d, MaxPool2d
I Object Detection, AlexNet, VGG, Sizes of networks
I Transfer Learning
I More Ideas: BatchNorm2d, Global Pooling



Convolutional Neural Networks



Convolution Computation



Multiple Input and Output Channels



Max-Pooling



Strided Convolution



Example CNN: AlexNet

import torchvision.models
alexNet = torchvision.models.alexnet(pretrained=False)



Convolutional Features



Receptive Fields

Because of downsampling (pooling and use of strides), higher-layer
filters “cover” a larger region of the input than equal-sized filters in
the lower layers.



Object Recognition



Object Recognition Task

I Object recognition is the task of identifying which object
category is present in an image.

I Deal with change in position, size, shape, occlusion, lighting,
. . .

I Direct application to image search
I Closely related to object detection, the task of locating all

instances of an object in an image

For the past 6 years, all of the best object recognizers have been
various kinds of conv nets.



Object Recognition Dataset

I In order to train and evaluate a machine learning system, we
need to collect a dataset.

I The design of the dataset can have major implications

Biggest image classification “advances” of the last two decades:
I Datasets have gotten much larger (because of digital cameras

and the Internet)
I Computers got much faster
I Graphics processing units (GPUs) turned out to be really good

at training big neural nets; they’re generally about 30 times
faster than CPUs.

As a result, we could fit bigger and bigger neural nets.



Image Classification Data: MNIST

MNIST dataset of handwritten digits
I Categories: 10 digit classes
I Source: Scans of handwritten zip codes from envelopes
I Size: 60,000 training images and 10,000 test images, grayscale,

of size 28×28
I Normalization: centered within in the image, scaled to a

consistent size

In 1998, Yann LeCun and colleagues built a conv net called LeNet
which was able to classify digits with 98.9% test accuracy.

It was good enough to be used in a system for automatically reading
numbers on checks.

Data Size: ~60MB



Image Classification Data: ImageNet

ImageNet is the modern object recognition benchmark dataset. It
was introduced in 2009, and has led to amazing progress in object
recognition since then

I Categories: 1000 categories (e.g. hundreds of kinds of dogs)
I Size: 1.2 million full-sized images
I Source: Results from image search engines, hand-labeled by

Mechanical Turkers
I Normalization: none, although the contestants are free to do

preprocessing

Data Size: ~50 GB



ImageNet Images



Size of a network

Ways to measure size of a network:
I Number of units: important because the activations need to

be stored in memory during training (i.e. backprop)
I More units imply higher memory requirement

I Number of connections: important because there are
approximately 3 add-multiply operations per connection (1 for
the forward pass, 2 for the backward pass).

I More units imply higher CPU/GPU requirement
I Number of weights: important because the weights need to

be stored in memory, and because the number of parameters
determines the amount of overfitting.

I More units imply higher training data requirement



Size of a fully-conneted layer

If we have M input units and N output units, then
I Number of units = N
I Number of connections = MN
I Number of weights = MN



Size of a convolutional layer

If we have M input channels, N output channels, kernel size K × K ,
input shape H × W , and padding K−1

2

I Number of units = WHN
I Number of connections = WHK 2MN
I Number of weights = K 2MN



Homework 4

In homework 4, we’ll be looking at the size of AlexNet

When doing homework 4, think about:
I Where are most of the units?
I Where are most of the connections?
I Where are most of the weights?



Why AlexNet?

Reason 1: AlexNet’s performance on the ImageNet dataset is what
set off the deep learning boom of the last 6 years!

Reason 2: Transfer Learning!



Transfer Learning

Transfer Learning is the idea of using weights/features trained on
one task, and using it on another task.

We already saw the idea of transfer learning in project 2:
I Train a model to predict the next work given the previous three
I Use the weights to determine word similarities



Transfer learning with CNN

Practioners rarely train a CNN “from scratch”. Instead we could:

1. Take a pre-trained CNN model (e.g. AlexNet), and use its
features network to compute image features, which we then
use to classify our own images

2. Initialize our weights using the weights of a pre-trained CNN
model (e.g. AlexNet)



Another CNN: VGG

Also trained on ImageNet, and often used for Transfer Learning:

# There are a few VGG versions
vgg16 = torchvision.models.vgg.vgg16(pretrained=False)
vgg19 = torchvision.models.vgg.vgg19(pretrained=False)



What we want you to know:

I AlexNet and VGG are trained on the ImageNet data (image
classification task)

I AlexNet (2012) came before VGG (2014)
I VGG is the larger network (according to any measurement)

What’s interesting about VGG?
I VGG uses very small receptive fields (3 × 3 instead of 11 × 11)
I VGG incorporates 1 × 1 convolutional layers (why?)



Modern CNN Ideas



Batch Normalization

Recent convolutional neural networks also use batch
normalization.

Unlike in a fully-connected layer, we normalize over an entire feature
map (an entire channel).

In PyTorch nn.BatchNorm2d(num_output_channels) rather
than nn.BatchNorm1d(num_output_features).



Global Average Pooling

I Average (or max pool) over the entire channel
I This avoids fully-connected layers altogether
I The CNN can (theoretically) take arbitrary dimension images

as input
I Q: Why theoretically?



Fully Convolutional Networks

Fully convolutional networks do not use any fully connected layers!

Instead, use global average pooling.



More Fully Convolutional Networks

Example: This is an example of a CNN solving a pixel-wise
prediction problem, i.e. classifying each pixel. We’ll talk more about
pixel-wise prediction next week!

Image from "Fully Convolutional Networks for Diabetic Foot Ulcer Segmentation"


	Convolutional Neural Networks
	Object Recognition
	Modern CNN Ideas

