CSC321 Neural Networks and Machine Learning

Lecture 6

February 12, 2020

Agenda

- Projects 1 and 2
- Project 3 data collection
- Midterm
- Convolutional Neural Networks

Announcements

- Project 1 is released
 - If you received more than 4 points off due to your answers being cut off, please submit a remark request
 - Remarks are for possible TA mistakes
 - Feedback on common issues available on Quercus
- Project 2 is due tomorrow
 - FAQ on Piazza
 - Pouria has office hours later today

Project 3 Data Collection

For project 3, we'll be collecting our own data as a class.

If you submit your data by **Monday Feb 17th, 9pm** we will award you 3 extra grace tokens. (Why? So that we have more time to develop a fun assignment with this data set!)

Midterm

The midterm will take place after reading week on Feb 26th

- 50 minutes midterm during the first half of the hour
 - 9:10am 10:00am (LEC0101)
 - 11:10am 12:00pm (LEC0101)
- We'll have a short lecture after
 - 10:20am-11am (LEC0101)
 - 12:20pm-1pm (LEC0102)

Midterm Coverage

- Weeks 1-6 materials, including convolutional neural networks forward pass
- Tutorials 2-6, Homeworks 1-3, Projects 1-2
- No aids will be permitted
- You won't need a calculator
- You may be asked to work with code, for example reason about issues with code that we give you
 - You don't need to memorize the numpy or PyTorch API
 - You do need to recognize (for example) a that trying to multiply a 3 × 4 matrix and a 5 × 2 matrix will fail

How to study?

- Previous midterms (available on the course website)
- Midterms from related courses (to see what multiple choice questions might look like)
- Review homework questions
- Review projects 1 and 2 (especially if you worked with a partner)

If you post study resources to share on Piazza (notes, solutions to posted problems, etc), we'll pin it.

Office Hours

- No office hours during reading week
- Pouria will have an online office hour during reading week (to be announced)
- Lisa has office hours Monday Feb 24th
- Tuesday's tutorial time will be turned into office hours
- CANCELLED Pouria's office hours Wednesday Feb 26th

Questions?

Working with Images

Computer vision is hard

- Object change in pose, size, viewpoint, background
- Some objects are hidden behind others: occlusion

Computer vision is really hard

How can you "hard code" an algorithm that still recognizes that this is a cat?

Working with Small Images

In tutorials 4 and 6, we worked with small images: 28×28 pixels, black and white.

How do our models work?

Notebook Demo - Logistic Regression Weights

Notebook Demo - MLP Weights (first layer)

- Suppose you have an image that is 200 pixels x 200 pixels
- There are 500 units in the first hidden layer
- Q: How many parameters will there be in the first layer?

- Suppose you have an image that is 200 pixels x 200 pixels
- There are 500 units in the first hidden layer
- Q: How many parameters will there be in the first layer?
- A: $200 \times 200 \times 500 + 500 = \text{over } 20 \text{ million!}$

- Suppose you have an image that is 200 pixels x 200 pixels
- There are 500 units in the first hidden layer
- Q: How many parameters will there be in the first layer?
- A: $200 \times 200 \times 500 + 500 = \text{over } 20 \text{ million!}$
- Q: Why might using a fully connected layer be problematic?

- Suppose you have an image that is 200 pixels x 200 pixels
- There are 500 units in the first hidden layer
- Q: How many parameters will there be in the first layer?
- A: $200 \times 200 \times 500 + 500 = \text{over } 20 \text{ million!}$
- Q: Why might using a fully connected layer be problematic?
 - computing predictions (forward pass) will take a long time
 - large number of weights requires a lot of training data to avoid overfitting
 - small shift in image can result in large change in prediction

Convolutions

Biological Influence

There is evidence that biological neurons in the visual cortex have *locally-connected* connections

Convolutional Neural Network

Ideas:

- Locally-connected layers: compute *local* features based on small regions of the image
 - Examples of *features*:
 - a horizontal edge in an area
 - a vertical edge in an area
 - a blob (no edges) in the area
 - a circular shape in the area
- Weight-sharing: detect the same local features across the entire image

Each hidden unit connects to a small region of the input (in this case a 3×3 region)

Input activations

100	100	100	100	100	100
100	100	100	100	100	100
100	0	0	100	100	100
0	0	0	0	0	0
0	0	0	0	0	0

(Remove lines for readability)

Input activations

100	100	100	100	100	100
100	100	100	100	100	100
100	0	0	100	100	100
0	0	0	0	0	0
0	0	0	0	0	0

Hidden activation

Hidden unit geometry has a 2D geometry consistent with the input

Input activations

100	100	100	100	100	100
100	100	100	100	100	100
100	0	0	100	100	100
0	0	0	0	0	0
0	0	0	0	0	0

Input activations

100	100	100	100	100	100
100	100	100	100	100	100
100	0	0	100	100	100
0	0	0	0	0	0
0	0	0	0	0	0

Input activations

100	100	100	100	100	100
100	100	100	100	100	100
100	0	0	100	100	100
0	0	0	0	0	0
0	0	0	0	0	0

Input activations

100	100	100	100	100	100
100	100	100	100	100	100
100	0	0	100	100	100
0	0	0	0	0	0
0	0	0	0	0	0

Input activations

100	100	100	100	100	100
100	100	100	100	100	100
100	0	0	100	100	100
0	0	0	0	0	0
0	0	0	0	0	0

Hidden activation

Q: Which region of the input is this hidden unit connected to?

Input activations

100	100	100	100	100	100
100	100	100	100	100	100
100	0	0	100	100	100
0	0	0	0	0	0
0	0	0	0	0	0

Weight Sharing

Use the *same weights* across each region (each colour represents the same weight)

Each neuron on the higher layer is detecting the same feature, but in different locations on the lower layer

"Detecting" = output (activation) is high if feature is present "Feature" = something in a part of the image, like an edge or shape

Convolution Computation

Input activations

100	100	100	100	100	100
100	100	100	100	100	100
100	0	0	100	100	100
0	0	0	0	0	0
0	0	0	0	0	0

Kernel

300		

$$\begin{array}{l} 300 = & 100 \times 1 + 100 \times 2 + 100 \times 1 + \\ & 100 \times 0 + 100 \times 0 + 100 \times 0 + \\ & 100 \times (-1) + 0 \times (-2) + 0 \times (-1) \end{array}$$

- The kernel or filter (middle) contains the trainable weights
- In our example, the kernel size is 3×3
- The "convolved features" or "feature map" are other terms for the output hidden activation

Convolution Computation

Input activations

100	100	100	100	100	100
100	100	100	100	100	100
100	0	0	100	100	100
0	0	0	0	0	0
0	0	0	0	0	0

2

0

Hidden activation

300	300	

 $\begin{array}{l} 300 = & 100 \times 1 + 100 \times 2 + 100 \times 1 + \\ & 100 \times 0 + 100 \times 0 + 100 \times 0 + \\ & 0 \times (-1) + 0 \times (-2) + 100 \times (-1) \end{array}$

Convolution Computation (Your Turn!)

Input activations

100	100	100	100	100	100
100	100	100	100	100	100
100	0	0	100	100	100
0	0	0	0	0	0
0	0	0	0	0	0

1	2	1
0	0	0
-1	-2	-1

Weights

Hidden activation

300	300	?	

Q: What is the value of the highlighted hidden activation?

Convolution Computation

Input activations

100	100	10 <mark>0</mark>	100	100	100
100	100	100	100	100	100
100	0	0	100	100	100
0	0	0	0	0	0
0	0	0	0	0	0

Kernel

Hidden activation

300	300	100	

 $100 = 100 \times 1 + 100 \times 2 + 100 \times 1 +$ $100 \times 0 + 100 \times 0 + 100 \times 0 +$ $0 \times (-1) + 100 \times (-2) + 100 \times (-1)$

Convolution Computation

Input activations

100	100	100	100	100	100
100	100	100	100	100	100
100	0	0	100	100	100
0	0	0	0	0	0
0	0	0	0	0	0

Kernel

1 2 1 0 0 0 -1 -2 -1

Hidden	activation

300	300	100	0
400	400	400	400
100	100	300	300

Sobel Filter - Weights to Detect Horizontal Edges

Horizontal Edge (absolute value)⁸

Sobel Filter - Weights to Detect Vertical Edges

Vertical Edge (absolute value)

Weights to Detect Blobs

Q: What is the kernel size of this convolution?

Example:

Greyscale input image: 8×8

Convolution **kernel**: 5×5

Q: How many hidden units are in the output of this convolution?

Q: How many trainable parameters are there?

Example:

Greyscale input image: 8×8

Convolution kernel: 5×5

Q: How many hidden units are in the output of this convolution?

Q: How many trainable parameters are there?

There are $5 \times 5 + 1$ trainable parameters. We have been ignoring the bias, but there is a bias applied.

Convolutions in Practice

What if we have a coloured image?

What if we want to compute *multiple* features?

Convolution in RGB

The kernel becomes a 3-dimensional tensor! In this example, the kernel has size ${\bf 3}$ $\times 5 \times 5$

Colour input image: $\mathbf{3} \times 8 \times 8$ Convolution kernel: $\mathbf{3} \times 5 \times 5$

Questions:

- How many units are in the **output** of this convolution?
- How many trainable parameters are there?

Colour input image: $\mathbf{3} \times 8 \times 8$ Convolution kernel: $\mathbf{3} \times 5 \times 5$ Questions:

- How many units are in the **output** of this convolution?
- How many trainable parameters are there?

There are $3 \times 5 \times 5 + 1$ trainable parameters.

Input image: $3 \times 8 \times 8$

Convolution kernel: $\mathbf{3} \times 5 \times 5$

The number 3 is the number of input channels or input feature maps

Detecting Multiple Features

Q: What if we want to detect many features of the input? (i.e. **both** horizontal edges and vertical edges, and maybe even other features?)

Detecting Multiple Features

Q: What if we want to detect many features of the input? (i.e. **both** horizontal edges and vertical edges, and maybe even other features?)

A: Have many convolutional filters!

Detecting Multiple Features

Q: What if we want to detect many features of the input? (i.e. **both** horizontal edges and vertical edges, and maybe even other features?)

A: Have many convolutional filters!

Many Convolutional Filters

Input image: $3 \times 8 \times 8$ Convolution kernel: $10 \times 3 \times 5 \times 5$ Q:

- How many units are in the output of this convolution?
- How many trainable weights are there?

Many Convolutional Filters

```
Input image: 3 \times 8 \times 8
Convolution kernel: 10 \times 3 \times 5 \times 5
Q:
```

- How many units are in the output of this convolution?
- How many trainable weights are there?

There are $10 \times (3 \times 5 \times 5 + 1)$ trainable parameters.

Input image of size $3 \times 8 \times 8$

Convolution kernel of $\boldsymbol{10}$ \times $\boldsymbol{3}$ $\times5\times5$

- The number 10 is the number of output channels or output feature maps
- The number 3 is the number of input channels or input feature maps

Example

Input features: $5 \times 32 \times 32$ Convolution kernel: $8 \times 5 \times 3 \times 3$ Questions:

- How many input channels are there?
- How many output channels are there?
- How many units are in the higher layer?
- How many trainable weights are there?

Zero Padding

- Add zeros around the border of the image
- (Can add more than one pixel of zeros)
- Q: Why might we want to add zero padding?

Zero Padding

- Add zeros around the border of the image
- (Can add more than one pixel of zeros)
- Q: Why might we want to add zero padding?
 - Keep the next layer's width and height consistent with the previous
 - Keep the information around the border of the image

Convolutional Layers in PyTorch

Let's take a look at convolutional layers in PyTorch!

Consolidating Information

In a neural network with fully-connected layers, we reduced the number of units in each hidden layer

Q: Why?

Consolidating Information

In a neural network with fully-connected layers, we reduced the number of units in each hidden layer

Q: Why?

To be able to consolidate information, and remove out information not useful for the current task

Q: How can we consolidate information in a neural network with convolutional layers?

Consolidating Information

In a neural network with fully-connected layers, we reduced the number of units in each hidden layer

Q: Why?

To be able to consolidate information, and remove out information not useful for the current task

Q: How can we consolidate information in a neural network with convolutional layers?

max pooling, average pooling, strided convolutions

Max-Pooling

Idea: take the maximum value in each 2×2 grid.

Max-Pooling Example

We can add a max-pooling layer after each convolutional layer

Average Pooling

- Average pooling (compute the average activation of a region)
- Max pooling generally works better

Strided Convolution

More recently people are doing away with pooling operations, using **strided** convolutions instead:

Shift the kernel by 2 (stride=2) when computing the next output feature.

https://arxiv.org/pdf/1603.07285.pdf
https://github.com/vdumoulin/conv_arithmetic

Early Convolutional Architecture: LeNet Architecture

- Input: 32x32 pixel, greyscale image
- First convolution has 6 output features (5x5 convolution?)
- First subsampling is probably a max-pooling operation
- Second convolution has 16 output features (5x5 convolution?)
- ▶ ...
- Some number of fully-connected layers at the end

What features do CNN's detect?

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

Training a CNN

- We train using backpropagation!
- We already know how to work with shared weights (project 2), and computing CNN weight updates works the same way