
CSC321 Neural Networks and Machine Learning

Lecture 6

February 12, 2020



Agenda

I Projects 1 and 2
I Project 3 data collection
I Midterm
I Convolutional Neural Networks



Announcements

I Project 1 is released
I If you received more than 4 points off due to your answers being

cut off, please submit a remark request
I Remarks are for possible TA mistakes
I Feedback on common issues available on Quercus

I Project 2 is due tomorrow
I FAQ on Piazza
I Pouria has office hours later today



Project 3 Data Collection

For project 3, we’ll be collecting our own data as a class.

If you submit your data by Monday Feb 17th, 9pm we will award
you 3 extra grace tokens. (Why? So that we have more time to
develop a fun assignment with this data set!)



Midterm



Midterm Logistics

The midterm will take place after reading week on Feb 26th

I 50 minutes midterm during the first half of the hour
I 9:10am - 10:00am (LEC0101)
I 11:10am - 12:00pm (LEC0101)

I We’ll have a short lecture after
I 10:20am-11am (LEC0101)
I 12:20pm-1pm (LEC0102)



Midterm Coverage

I Weeks 1-6 materials, including convolutional neural networks
forward pass

I Tutorials 2-6, Homeworks 1-3, Projects 1-2
I No aids will be permitted
I You won’t need a calculator
I You may be asked to work with code, for example reason about

issues with code that we give you
I You don’t need to memorize the numpy or PyTorch API
I You do need to recognize (for example) a that trying to

multiply a 3 × 4 matrix and a 5 × 2 matrix will fail



How to study?

I Previous midterms (available on the course website)
I Midterms from related courses (to see what multiple choice

questions might look like)
I Review homework questions
I Review projects 1 and 2 (especially if you worked with a

partner)

If you post study resources to share on Piazza (notes, solutions to
posted problems, etc), we’ll pin it.



Office Hours

I No office hours during reading week
I Pouria will have an online office hour during reading week (to

be announced)
I Lisa has office hours Monday Feb 24th
I Tuesday’s tutorial time will be turned into office hours
I CANCELLED Pouria’s office hours Wednesday Feb 26th



Questions?



Working with Images



Computer vision is hard

I Object change in pose, size, viewpoint, background
I Some objects are hidden behind others: occlusion



Computer vision is really hard

How can you “hard code” an algorithm that still recognizes that this
is a cat?



Working with Small Images

In tutorials 4 and 6, we worked with small images: 28 × 28 pixels,
black and white.

How do our models work?



Notebook Demo - Logistic Regression Weights



Notebook Demo - MLP Weights (first layer)



Working with Large Images

I Suppose you have an image that is 200 pixels x 200 pixels
I There are 500 units in the first hidden layer

Q: How many parameters will there be in the first layer?

A: 200 × 200 × 500 + 500 = over 20 million!

Q: Why might using a fully connected layer be problematic?

I computing predictions (forward pass) will take a long time
I large number of weights requires a lot of training data to avoid

overfitting
I small shift in image can result in large change in prediction



Working with Large Images

I Suppose you have an image that is 200 pixels x 200 pixels
I There are 500 units in the first hidden layer

Q: How many parameters will there be in the first layer?

A: 200 × 200 × 500 + 500 = over 20 million!

Q: Why might using a fully connected layer be problematic?

I computing predictions (forward pass) will take a long time
I large number of weights requires a lot of training data to avoid

overfitting
I small shift in image can result in large change in prediction



Working with Large Images

I Suppose you have an image that is 200 pixels x 200 pixels
I There are 500 units in the first hidden layer

Q: How many parameters will there be in the first layer?

A: 200 × 200 × 500 + 500 = over 20 million!

Q: Why might using a fully connected layer be problematic?

I computing predictions (forward pass) will take a long time
I large number of weights requires a lot of training data to avoid

overfitting
I small shift in image can result in large change in prediction



Working with Large Images

I Suppose you have an image that is 200 pixels x 200 pixels
I There are 500 units in the first hidden layer

Q: How many parameters will there be in the first layer?

A: 200 × 200 × 500 + 500 = over 20 million!

Q: Why might using a fully connected layer be problematic?

I computing predictions (forward pass) will take a long time
I large number of weights requires a lot of training data to avoid

overfitting
I small shift in image can result in large change in prediction



Convolutions



Biological Influence

There is evidence that biological neurons in the visual cortex have
locally-connected connections



Convolutional Neural Network

Ideas:

I Locally-connected layers: compute local features based on
small regions of the image

I Examples of features:
I a horizontal edge in an area
I a vertical edge in an area
I a blob (no edges) in the area
I a circular shape in the area

I Weight-sharing: detect the same local features across the
entire image



Locally Connected Layers

Each hidden unit connects to a small region of the input (in this
case a 3 × 3 region)



Locally Connected Layers

(Remove lines for readability)



Locally Connected Layers

Hidden unit geometry has a 2D geometry consistent with the input



Locally Connected Layers



Locally Connected Layers



Locally Connected Layers



Locally Connected Layers



Locally Connected Layers

Q: Which region of the input is this hidden unit connected to?



Locally Connected Layers



Weight Sharing

Use the same weights across each region (each colour represents the
same weight)

Each neuron on the higher layer is detecting the same feature, but
in different locations on the lower layer

“Detecting” = output (activation) is high if feature is present
“Feature” = something in a part of the image, like an edge or shape



Convolution Computation

300 =100 × 1 + 100 × 2 + 100 × 1+
100 × 0 + 100 × 0 + 100 × 0+
100 × (−1) + 0 × (−2) + 0 × (−1)

I The kernel or filter (middle) contains the trainable weights
I In our example, the kernel size is 3 × 3
I The “convolved features” or “feature map” are other terms

for the output hidden activation



Convolution Computation

300 =100 × 1 + 100 × 2 + 100 × 1+
100 × 0 + 100 × 0 + 100 × 0+
0 × (−1) + 0 × (−2) + 100 × (−1)



Convolution Computation (Your Turn!)

Q: What is the value of the highlighted hidden activation?



Convolution Computation

100 =100 × 1 + 100 × 2 + 100 × 1+
100 × 0 + 100 × 0 + 100 × 0+
0 × (−1) + 100 × (−2) + 100 × (−1)



Convolution Computation



Sobel Filter - Weights to Detect Horizontal Edges



Sobel Filter - Weights to Detect Vertical Edges



Weights to Detect Blobs

Q: What is the kernel size of this convolution?



Example:

Greyscale input image: 8 × 8

Convolution kernel: 5 × 5

Q: How many hidden units are in the output of this convolution?

Q: How many trainable parameters are there?

There are 5 × 5 + 1 trainable parameters. We have been ignoring
the bias, but there is a bias applied.



Example:

Greyscale input image: 8 × 8

Convolution kernel: 5 × 5

Q: How many hidden units are in the output of this convolution?

Q: How many trainable parameters are there?

There are 5 × 5 + 1 trainable parameters. We have been ignoring
the bias, but there is a bias applied.



Convolutions in Practice

What if we have a coloured image?

What if we want to compute multiple features?



Convolution in RGB

The kernel becomes a 3-dimensional tensor!

In this example, the kernel has size 3 ×5 × 5



Convolutions: RGB Input

Colour input image: 3 ×8 × 8

Convolution kernel: 3 ×5 × 5

Questions:

I How many units are in the output of this convolution?
I How many trainable parameters are there?

There are 3 × 5 × 5 + 1 trainable parameters.



Convolutions: RGB Input

Colour input image: 3 ×8 × 8

Convolution kernel: 3 ×5 × 5

Questions:

I How many units are in the output of this convolution?
I How many trainable parameters are there?

There are 3 × 5 × 5 + 1 trainable parameters.



Terminology

Input image: 3 × 8 × 8

Convolution kernel: 3 ×5 × 5

I The number 3 is the number of input channels or input
feature maps



Detecting Multiple Features

Q: What if we want to detect many features of the input? (i.e.
both horizontal edges and vertical edges, and maybe even other
features?)

A: Have many convolutional filters!



Detecting Multiple Features

Q: What if we want to detect many features of the input? (i.e.
both horizontal edges and vertical edges, and maybe even other
features?)

A: Have many convolutional filters!



Detecting Multiple Features

Q: What if we want to detect many features of the input? (i.e.
both horizontal edges and vertical edges, and maybe even other
features?)

A: Have many convolutional filters!



Many Convolutional Filters

Input image: 3 × 8 × 8

Convolution kernel: 10 ×3 × 5 × 5

Q:

I How many units are in the output of this convolution?
I How many trainable weights are there?

There are 10 × (3 × 5 × 5 + 1) trainable parameters.



Many Convolutional Filters

Input image: 3 × 8 × 8

Convolution kernel: 10 ×3 × 5 × 5

Q:

I How many units are in the output of this convolution?
I How many trainable weights are there?

There are 10 × (3 × 5 × 5 + 1) trainable parameters.



More Terminology

Input image of size 3 × 8 × 8

Convolution kernel of 10 × 3 ×5 × 5

I The number 10 is the number of output channels or output
feature maps

I The number 3 is the number of input channels or input
feature maps



Example

Input features: 5 × 32 × 32

Convolution kernel: 8 × 5 × 3 × 3

Questions:

I How many input channels are there?
I How many output channels are there?
I How many units are in the higher layer?
I How many trainable weights are there?



Zero Padding

I Add zeros around the border of the image
I (Can add more than one pixel of zeros)

Q: Why might we want to add zero padding?

I Keep the next layer’s width and height consistent with the
previous

I Keep the information around the border of the image



Zero Padding

I Add zeros around the border of the image
I (Can add more than one pixel of zeros)

Q: Why might we want to add zero padding?

I Keep the next layer’s width and height consistent with the
previous

I Keep the information around the border of the image



Convolutional Layers in PyTorch

Let’s take a look at convolutional layers in PyTorch!



Consolidating Information

In a neural network with fully-connected layers, we reduced the
number of units in each hidden layer

Q: Why?

I To be able to consolidate information, and remove out
information not useful for the current task

Q: How can we consolidate information in a neural network with
convolutional layers?

I max pooling, average pooling, strided convolutions



Consolidating Information

In a neural network with fully-connected layers, we reduced the
number of units in each hidden layer

Q: Why?

I To be able to consolidate information, and remove out
information not useful for the current task

Q: How can we consolidate information in a neural network with
convolutional layers?

I max pooling, average pooling, strided convolutions



Consolidating Information

In a neural network with fully-connected layers, we reduced the
number of units in each hidden layer

Q: Why?

I To be able to consolidate information, and remove out
information not useful for the current task

Q: How can we consolidate information in a neural network with
convolutional layers?

I max pooling, average pooling, strided convolutions



Max-Pooling

Idea: take the maximum value in each 2 × 2 grid.



Max-Pooling Example

We can add a max-pooling layer after each convolutional layer



Average Pooling

I Average pooling (compute the average activation of a region)
I Max pooling generally works better



Strided Convolution

More recently people are doing away with pooling operations, using
strided convolutions instead:

Shift the kernel by 2 (stride=2) when computing the next output
feature.



Visuals

https://arxiv.org/pdf/1603.07285.pdf
https://github.com/vdumoulin/conv_arithmetic



Early Convolutional Architecture: LeNet Architecture

I Input: 32x32 pixel, greyscale image
I First convolution has 6 output features (5x5 convolution?)
I First subsampling is probably a max-pooling operation
I Second convolution has 16 output features (5x5 convolution?)
I . . .
I Some number of fully-connected layers at the end



What features do CNN’s detect?



Training a CNN

I We train using backpropagation!
I We already know how to work with shared weights (project 2),

and computing CNN weight updates works the same way


	Midterm
	Questions?
	Working with Images
	Convolutions

