
CSC321 Neural Networks and Machine Learning

Lecture 5

February 5, 2020

Agenda

I Optimization
I Bias-Variance Decomposition
I Distributed Representations (Project 2)

Optimization

Gradient Descent (1D)

The regions where gradient descent converges to a particular local
minimum are called basins of attraction.

Optimization Problems in 2D
Visualizing two-dimensional optimization problems is trickier.
Surface plots can be hard to interpret:

Let’s group all the parameters (weights and biases) of a network
into a single vector θ

Gradient Descent (2D)

Contours: set of points where E(θ) is constant.

Features of the Optimization Landscape

convex functions local minima saddle points

plateaux
narrow ravines

Convexity of Linear Models

Linear regression and logistic regressions are convex
problems—i.e. its loss function is convex.

A function f is convex if for any a ∈ (0, 1)

f (ax + (1− a)y) < af (x) + (1− a)f (y)

I The cost function only has one minima.
I There are no local minima that is not global minima.
I Intuitively: the cost function is “bowl-shaped”.

Neural Networks are Not Convex

In general, neural networks are not convex.

One way to see this is that neural networks have weight space
symmetry:

I Suppose you are at a local minima θ.
I You can swap two hidden units, and therefore swap the

corresponding weights/biases, and get θ′,
I then θ′ must also be a local minima!

Local Minima in Neural Networks

Even though any multilayer neural net can have local optima, we
usually don’t worry too much about them.

It’s possible to construct arbitrarily bad local minima even for
ordinary classification MLPs. It’s poorly understood why these don’t
arise in practice.

Intuition pump: if you have enough randomly sampled hidden units,
you can approximate any function just by adjusting the output layer.

I Then it’s essentially a regression problem, which is convex.
I Hence, local optima can probably be fixed by adding more

hidden units.
I Note: this argument hasn’t been made rigorous.

Saddle Points

A saddle point has ∂E
∂θ = 0, even though we are not at a minimum.

(Minima with respect to some directions, maxima with respect to
others.)

When would saddle points be a problem?

I If we’re exactly on the saddle point, then we’re stuck.
I If we’re slightly to the side, then we can get unstuck.

Initialization

I If we initialize all weights/biases to the same value, (e.g. 0)
I . . . then all the hidden states in the same layer will have the

same value, (e.g. h will be a vector containing the same value
repeated)

I . . . then all of the error signals for weights in the same layer are
the same. (e.g. each row of W (2) will be identical)

y = L(y− t)

W (2) = yhT

h = W (2)T y
z = h ◦ σ′(z)

W (1) = zxT

Random Initialization

Solution: don’t initialize all your weights to zero!

Instead, break the symmetry by using small random values.

In project 2, we initialize the weights by sampling from a random
normal distribution with:

I Mean = 0
I Variance = 2

fan_in where fan_in is the number of input
neurons that feed into this feature. (He et al. 2015)

Plateaux
A flat region in the cost is called a plateau. (Plural: plateaux)

Can you think of examples?

I logistic activation with least squares
I 0-1 loss
I ReLU activation (potentially)

Plateaux and Saturated Units

An important example of a plateau is a saturated unit. This is
when activations always end up in the flat region of its activation
function. Recall the backprop equation for the weight derivative:

zi = hi φ
′(z)

wij = zi xj

I If φ′(z) is always close to zero, then the weights will get stuck.
I If there is a ReLU unit whose input zi is always negative, the

weight derivatives will be exactly 0. We call this neuron a dead
unit.

Ravines

Lots of sloshing around the walls, only a small derivative along the
slope of the ravine’s floor.

Ravines (2D Intuition)

I Gradient component ∂E
∂w1

is small
I Gradient component ∂E

∂w2
is large

Ravines Example

Suppose we have the following dataset for linear regression.

x1 x2 t
114.8 0.00323 5.1
338.1 0.00183 3.2
98.8 0.00279 4.1
...

...
...

wi = y xi

I Which weight, w1 or w2, will receive a larger gradient descent
update?

I Which one do you want to receive a larger update?
I Note: the figure vastly understates the narrowness of the

ravine!

Ravines: another examples

x1 x2 t
1003.2 1005.1 3.3
1001.1 1008.2 4.8
998.3 1003.4 2.9
...

...
...

Avoiding Ravines

To avoid these problems, it’s a good idea to center or normalize
your inputs to zero mean and unit variance, especially when they’re
in arbitrary units (feet, seconds, etc.).

Hidden units may have non-centered activations, and this is harder
to deal with.

A recent method called batch normalization explicitly centers each
hidden activation. It often speeds up training by 1.5-2x.

Batch Normalization

Idea: Normalize the activations per batch during training, so that
the activations have zero mean and unit variance.

What about during test time (i.e. during model evaluation)?

I Keep track of the activation mean µ and variance σ during
training.

I Use that µ and σ at test time: z ′ = z−µ
σ .

Batch Normalization in PyTorch (Project 2)

class PyTorchWordEmb(nn.Module):
def __init__(self, emb_size=100, ...)

super(PyTorchWordEmb, self).__init__()
self.word_emb_layer = nn.Linear(vocab_size, ...)
self.fc_layer1 = nn.Linear(emb_size * 3, num_hidden)
self.bn = nn.BatchNorm1d(num_hidden) # <----
self.fc_layer2 = nn.Linear(num_hidden, 250)
self.num_hidden = num_hidden
self.emb_size = emb_size

def forward(self, inp):
embeddings = torch.relu(self.word_emb_layer(inp))
embeddings = embeddings.reshape([-1, ...])
hidden = torch.relu(self.fc_layer1(embeddings))
hidden = self.bn(hidden) # <----
return self.fc_layer2(hidden)

Differentiating model training vs evaluation

Since model behaviour is different during training vs evaluation, we
need to annotate

model.train()

. . . before a forward pass during training, and. . .

model.eval()

. . . before a forward pass during evaluation.

(Note: You can use batch normalization for Project 2 if you would
like. It should speed up training.)

Momentum
Momentum is a simple and highly effective method to deal with
narrow ravines. Imagine a hockey puck on a frictionless surface
(representing the cost function). It will accumulate momentum in
the downhill direction:

p← µp− α∂E
∂θ

θ ← θ + p

I α is the learning rate, just like in gradient descent.
I µ is a damping parameter. It should be slightly less than 1

(e.g. 0.9 or 0.99).
I If µ = 1, conservation of energy implies it will never settle down.

(Note: You can use momentum for Project 2, numpy portion if you
would like.)

Why Momentum Workds

I In the high curvature directions, the
gradients cancel each other out, so
momentum dampens the
oscillations.

I In the low curvature directions, the
gradients point in the same
direction, allowing the parameters
to pick up speed.

I If the gradient is constant (i.e. the cost surface is a plane), the
parameters will reach a terminal velocity of − α

1−µ ·
∂E
∂θ This

suggests if you increase µ, you should lower α to compensate.
I Momentum sometimes helps a lot, and almost never hurts.

Second-Order Information

An area of research known as second-order optimization develops
algorithms which explicitly use curvature information (second
derivatives), but these are complicated and difficult to scale to large
neural nets and large datasets.

There is an optimization procedure called Adam which uses just a
little bit of curvature information and often works much better than
gradient descent. We will be using Adam in Project 2.

Learning Rate

The learning rate α is a hyperparameter we need to tune. Here are
the things that can go wrong in batch mode:

α too small:
slow progress

α too large:
oscillations

α much too large:
instability

Training Curve (or Learning Curve)
To diagnose optimization problems, it’s useful to look at learning
curves: plot the training cost as a function of iteration.

I Note: use a fixed subset of the training data to monitor the
training error. Evaluating on a different batch (e.g. the current
one) in each iteration adds a lot of noise to the curve!

I Note: it’s very hard to tell from the training curves whether an
optimizer has converged. They can reveal major problems, but
they can’t guarantee convergence.

Stochastic Gradient Descent

Batch gradient descent moves directly downhill. SGD takes steps in
a noisy direction, but moves downhill on average.

batch gradient descent
stochastic gradient

descent

SGD Learning Rate

In stochastic training, the learning rate also influences the
fluctuations due to the stochasticity of the gradients.

I Use a large learning rate early in training so you can get close
to the optimum

I Gradually decay the learning rate to reduce the fluctuations

Bias-Variance Decomposition

Recall: Underfitting/Overfitting

We’d like to minimize the generalization error, i.e. error on novel
examples

Let’s systematically analyze where error comes from

Bias-Variance Decomposition (1)
Suppose our training and test data are sampled from a data
generating distribution pD(x, t).

We are given an input x but not its corresponding t. We’d like to
predict y to minimize the expected square loss: EpD [(y − t)2|x]

The best possible prediction we can make is the conditional
expectation: y? = EpD [t|x]

Proof:

E[(y − t)2|x] = E[y2 − 2yt + t2|x]
= y2 − 2yE[t|x] + E[t2|x]
= y2 − 2yy? + E[t|x]2 + Var[t|x]
= y2 − 2yy? + y2

? + Var(t|x)
= (y − y?)2 + Var(t|x)

The term Var[t|x] is called the Bayes error.

Bias-Variance Decomposition (2)

Now suppose we sample a training set D from the data generating
distribution, and train a model f̂ : x→ y on the data, and use that
model to make a prediction y = f̂ (x) on test example x.

Here, y is a random variable, since we get a different model f̂ each
time we sample a new training set.

We would like to minimize the risk EpD [(y − t)2|x]. We can
decompose this into bias, variance, and Bayes error.

We’ll suppress the conditioning on x for clarity

Bias-Variance Decomposition (3)

E[(y − t)2] = E[(y − y?)2] + Var(t)
= E[y2

? − 2yy? − y2] + Var(t)
= y2

? − 2y?E[y] + E[y2] + Var(t)
= y2

? − 2y?E[y] + E[y]2 + Var(y) + Var(t)
= (E[y? − y])2 + Var(y) + Var(t)

Or

E[(f̂ (x)− t)2] = (E[y? − f̂ (x)])2︸ ︷︷ ︸
bias

+ Var(f̂ (x))︸ ︷︷ ︸
variance

+ Var(t)︸ ︷︷ ︸
Bayes error

Terms in the Bias-Variance Decomposition

I E[(y − t)2] : the expected training error
I E[y? − f̂ (x)])2 : the bias, or the squared average difference

between the best possible prediction and the prediction given
by f̂

I How badly will our model perform on average, across the
possible datasets we could receive?

I Var(f̂ (x))
I How the average prediction (across training sets) differs from

the prediction we get from one particular training set.

High bias

A low-capacity model has high bias

I bad performance on average, even across different training sets
I erroneous assumption in the model

High variance

A high-capacity model can have high variance

I prediction differs widely across different training sets
I sensitive to small changes in training data, including

accidentally regularities

Bias vs Variance

Distributed Representations

Feature Mapping

I Learning good representations is an important goal in machine
learning

I These representations are also called feature mappings, or
embeddings

I The representations we learn are often reusable for other tasks
I Finding good representations is an unsupervised learning

problem!
I Project 2:

I Learn how to predict the next word in a sentence given the
previous three (supervised learning)

I Learn vector representations of words (unsupervised learning)

Language Modeling

A language model. . .

I Models the probability distribution of natural language text.
I Determine the probability p(s) that a sequence of words (or a

sentence) s occurs in text.

A language model gives us a way to compute p(s)

Why language models p(s)?
I Determine authorship:

I build a language model p(s) of Donald Trump’s tweets
I determine whether a new tweet is written by Trump

I Generate a machine learning paper (given a corpus of machine
learning papers)

I Use as a prior for a speech recogntition system p(s|a), where a
represents the observed speech signal.

I An observation model, or likelihood, represented as p(a|s),
which tells us how likely the sentence s is to lead to the acoustic
signal a.

I A prior, represented as p(s) which tells us how likely a given
sentence s is. For example, “recognize speech” is more likely
than “wreck a nice beach”

I Use Bayes rule to infer a posterior distribution over sentences
given the speech signal:

p(s|a) = p(s)p(a|s)∑
s′ p(s ′)p(a|s′)

Training a Language Model

Assume we have a corpus of sentences s(1), . . . , s(N)

The maximum likelihood criterion says we want our model to
maximize the probability that our model assigns to the observed
sentences. We assume the sentences are independent, so that their
probabilities multiply.

In maximum likelihood training, we want to maximize
∏N

i=1 p(s(i))

Or minimize:

−
N∑

i=1
log p(s(i))

Since p(s) is usually small, − log p(s) is reasonably sized, positive
numbers

Probability of a sentence

A sentence is a sequence of words w1,w2, . . . ,wT , so

p(s) = p(w1,w2, . . . ,wT)
= p(w1)p(w2|w1) . . . p(wT |w1,w2, . . . ,wT−1)

We can make a simplifying Markov assumption that the
distribution over the next word depends on the preceding few words.

In project 2, we use a context length of 3 and model:

p(wt |w1,w2, . . . ,wt−1) = p(wt |wt−3,wt−2,wt−1)

This is a supervised learning problem!

N-Gram Language Model
A simple way of modeling p(wt |wt−2,wt−1) is by constructing a
table of conditional probabilities:

cat and city · · ·
the fat 0.21 0.003 0.01

four score 0.0001 0.55 0.0001 · · ·
New York 0.002 0.0001 0.48

...
...

Where the probabilities come from the empirical distribution:

p(w3 = cat|w1 = the,w2 = fat) = count(the fat cat)
count(the fat)

The phrases we’re counting are called n-grams (where n is the
length), so this is an n-gram language model. (Note: the above
example is considered a 3-gram model, not a 2-gram model!)

Example: Shakespeare N-Gram Language Model

Figure 1: From
https://lagunita.stanford.edu/c4x/Engineering/CS-224N/asset/slp4.pdf

https://lagunita.stanford.edu/c4x/Engineering/CS-224N/asset/slp4.pdf

Problems with N-Gram Language Model

I The number of entries in the conditional probability table is
exponential in the context length.

I Data sparsity: most n-grams never appear in the corpus, even
if they are possible.

Ways to deal with data sparisty:

I Use a short context (but this means the model is less powerful).
I Smooth the probabilities, e.g. by adding imaginary counts.
I Make predictions using an ensemble of n-gram models with

different ns.

Localist vs Distributed Representations

Conditional probability tables are a kind of localist representation:
all the information about a particular word is stored in one place: a
column of the table.

But different words are related, so we ought to be able to share
information between them.

Distributed Representations: Word Attributes

academic politics plural person building
students 1 0 1 1 0
colleges 1 0 1 0 1

legislators 0 1 1 1 0
schoolhouse 1 0 0 0 1

Idea:

1. use the word attributes to predict the next word.
2. learn the word attributes using an MLP with backpropagation

Sharing Information

Distributed representations allows us to share information between
related words. E.g., suppose we’ve seen the sentence

The cat got squashed in the garden on Friday.

This should help us predict the words in the sentence
The dog got flattened in the yard on (???)

An n-gram model can’t generalize this way, but a distributed
representation might let us do so.

Neural Language Model

Bengio�s neural net for predicting the next word

 “softmax” units (one per possible next word)

index of word at t-2 index of word at t-1

learned distributed
encoding of word t-2

learned distributed
encoding of word t-1

units that learn to predict the output word from features of the input words

table look-up table look-up

skip-layer
connections

Neural Language Model (Project 2)

Word Representations
Since we are usign one-hot encodings for the words, the weight
matrix of the word embedding layer acts like a lookup table.

Terminology:

I “Embedding” emphasizes that it’s a location in a
high-dimensonal space; words that are closer together are more
semantically similar.

I “Feature vector” emphasizes that it’s a vector that can be used
for making predictions, just like other feature mappigns we’ve
looked at (e.g. polynomials).

What do word embeddings look like?

It’s hard to visualize an n-dimensional space, but there are
algorithms for mapping the embeddings to two dimensions.

In project 2, we use algorithm called tSNE, which tries to make
distnaces in the 2-D embedding match the original high-dimensional
distances as closely as possible.

	Optimization
	Bias-Variance Decomposition
	Distributed Representations

