CSC321 Neural Networks and Machine Learning

Lecture 4

January 29, 2020

Agenda

Biological and Artificial Neurons

Neural Network

Multi-Layer Perceptron (Fully-connected layers)
Backpropagation

vV vyVvYyy

Biological and Artificial Neurons

Neuron

impulses carried
toward cell body

branches

dendrites

axon

nucleus terminals

impulses carried
away from cell body

Neuron Anatomy

» The dendrites, which are connected to other cells that
provides information.

» The cell body, which consolidates information from the
dendrites.

» The axon, which is an extension from the cell body that passes
information to other cells.

» The synapse, which is the area where the axon of one neuron
and the dendrite of another connect.

What does a neuron do?

Axon Yexrvinnals

SYNAPSE
Pre-Synaptic
¢ 'sendz\;"‘;*’ cell
Dendvves — Fost - synapiic

(receiving”) cell

» Consolidates “information” (voltage difference) from its
dendrites

> If the total activity in a neuron's dendrite lowers the voltage
difference enough, the entire cell depolarizes and the neuron
fires

» The voltage signal spread along the axon and to the synapse,
then to the next nuerons

» Neuron sends information to the next cell

What makes a neuron fires?

Neuron can fire in response to. ..

retinal cells
certain edges, lines, angles, movements
hands and faces (in primates)

specific people like Jennifer Aniston (in humans)
» Existence of “Grandmother cells” is still contested

vV vyYyysy

An Artificial Neural Network (Multi-Layer Perceptron)

Idea:

» Use a simplified (mathematical) model of a neuron as building
blocks
» Connect the neurons together in the following way:

input layer

hidden layer 1 hidden layer 2

» An input layer: feed in input features (e.g. like retinal cells in
your eyes)

» A number of hidden layers: don't have specific meaning

» An output layer: interpret output like a “grandmother cell”

But what do the neurons mean?

» Use x; to encode the input
> e.g. pixels in an image
> like the neurons that are connected to the receptors in the eye
» Use y to encode the output (of a binary classification problem)
> e.g. cancer vs. not cancer

Modeling Individual Neurons

Lo Wy
synapse
Woxo

axon from a neuron

cell body

f (Zwixi + b)
Zwizi + b :

output axon

activation
function

X1, X2, ... = inputs to the neuron

wi, Wa, ... = the neuron’s weights

b = the neuron's bias

f = an activation function

f(>°; xiw; + b) = the neuron’s activation (output)

vV vVvVvYyVvyy

Activation Functions: common choices

Common Choices:

» Sigmoid activation
» Tanh activation
» RelLU activation

Rule of thumb: Start with RelLU activation. If necessary, try tanh.

Activation Function: Sigmoid

L - 1

L
-10 -5 5 10

» somewhat problematic due to gradient signal
» all activations are positive

Activation Function: Tanh

N

05k
/

» scaled version of the sigmoid activation
> also somewhat problematic due to gradient signal
» activations can be positive or negative

Activation Function: ReLU

10k

L L L L
—10 -3 5 10

most often used nowadays

all activations are positive

easy to compute gradients

can be problematic if the bias is too large and negative, so the
activations are always 0

vV vyVyYyy

Linear Regression as a Single Neuron

Lo wy
synapse
Woxo

axon from a neuron

cell body

f (Zwi:si + b)
Zwizi + b :

output axon

activation
function

X1, X2, ... : inputs
wi, Wo, components of the weight vector w
b : the bias

f : identity function
y=Yixwj+b=wlx+b

vV vVvVvYyVvyy

Binary Classification (Logistic Regression) as a Single
Neuron

Zo wo
—_—
axon from a neuron g
WoZo

cell body

f (Zwi:si + b)
Zwimi + b :

output axon

activation
function

> X1,X2,... . inputs

> Wi, Wo,... . components of the weight vector w
> b : the bias

» f=0

» y=0o(3;xiw;i + b) = o(w'x+ b)

Multi-Classification (Logistic Regression) as a Neural
Network

We use K neurons (one for each class):

X1, X0, inputs

W11, W12, ... : components of the weight matrix W
b1, by, ... : components of the bias vector b

f = softmax : applied to the entire vector of values
y = softmax(Wx + b) : outputs of K neurons

vV VvV VvYyVvyy

Limits of Linear Classification

» Single neurons (linear classifiers) are very limited in expressive
power.

» XOR is a classic example of a function that’s not linearly
separable.

» From homework 2, this data set is not linearly separable:

,_.
[

MNIST Digit Recognition (Tutorial 4)

-
20 ":.
0 50 50 50 50 50 25
0 1 1 1) 1
20
0 50 50 50 50 50 5

> Input: An 28x28 pixel image
> Xx is a vector of length 784

» Target: The digit represented in the image
> tis a one-hot vector of length 10

» Model (from tutorial 4)
» y = softmax(Wx + b)

Adding a Hidden Layer

Two layer neural network

output layer
input layer
hidden layer

> Input size: 784 (number of features)
» Hidden size: 50 (we choose this number)
» Output size: 10 (number of classes)

Side note about machine learning models

When discussing machine learning models, we usually

» first talk about how to make predictions assume the weights
are trained
> then talk about how to traing the weights

Often the second step requires gradient descent or some other
optimization method

Making Predictions: computing the hidden layer

output layer

input layer
hidden layer

784 1 1
h = f(z Wl(’,-)x,- + bg))
—

784 1 1
hy = (3 wi)xi + b5
i=1

Making Predictions: computing the output (pre-activation)

output layer
input layer
hidden layer

50
71 = Z Wl(j)hj + bgz)
j=1

50
Zo = Z W2(3')hj + b£2)
=1

Making Predictions: applying the output activation

output layer
input layer
hidden layer
21
22
Z =
Z10

y = softmax(z)

Making Predictions: Vectorized

output layer
input layer
hidden layer

h = f(WOx + b))
z = f(WPh +b®?)

y = softmax(z)

Example: Small Neural Network

From homework 2, this data set is not linearly separable (i.e. we
can't correctly classify all 3 points using logistic regression, or using
a single neuron)

X t
-1 1
1 0

1

Can we come up with a neural network with two hidden units to
solve this problem?

Use RELU activation.

Example: Neural Network

h1 = relu(—3x)
hy = relu(x)
y =relu(hy + hy — 2)

X t ht hy y
-1 1.3 0 1
1 00 1 o0
31 0 3 1

Feature Learning

Neural nets can be viewed as a way of learning features:

linear regressor.
/ clasifier

Demo

Expressive Power: Linear Layers (No Activation Function)

> We've seen that there are some functions that linear classifiers
can't represent. Are deep networks any better?

» Any sequence of linear layers (with no activation function) can
be equivalently represented with a single linear layer.

y = WO Ww@pw x
—_————
= W'x

Deep linear networks are no more expressive than linear regression!

Expressive Power: MLP (nonlinear activation)

» Multilayer feed-forward neural nets with nonlinear activation
functions are universal approximators: they can approximate
any function arbitrarily well.

> This has been shown for various activation functions

(thresholds, logistic, ReLU, etc.)
» Even though RelLU is “almost” linear, it's nonlinear enough!

Universality for binary inputs and targets

» Hard threshold hidden units, linear output
» Strategy: 2P hidden units, each of which responds to one
particular input configuration
» Only requires one hidden layer, though it needs to be extremely
wide!

Limits of universality

» You may need to represent an exponentially large network.
» If you can learn any function, you'll just overfit.
» Really, we desire a compact representation!

Backpropagation

Training Neural Networks

» How do we find good weights for the neural network?
» We can continue to use the loss functions:

> cross-entropy loss for classification

> square loss for regression

» The neural network operations we used (weights, etc) are
continuous

We can use gradient descent!

Gradient Descent Recap

» Start with a set of parameters (initialize to some value)
» Compute the gradient 85 for each parameter (also ag)
» This computation can often vectorized
» Update the parameters towards the negative direction of the
gradient

Gradient Descent for Neural Networks

» Conceptually, the exact same idea!

» However, we have more parameters than before
» Higher dimensional
» Harder to visualize

» More “steps”
Since g—fv, is the average of g—ﬁ across training examples, we'll focus

on computing chv

Univariate Chain Rule

Recall: if f(x) and x(t) are univariate functions, then

d df dx
Ef(x(f)) = o dt

Univariate Chain Rule for Logistic Least Square

Recall: Univariate logistic least squares model (from homework 2)

zZ=wx+b
y =0(2)
P

Let's compute the loss derivative

Univariate Chain Rule Computation (1)

How you would have done it in calculus class (and maybe homework
2):

L= %(U(Wx +b)—)
oc o1

3w = Bw ((Wx+b)—t)
10
= 53w —(o (Wx—l-b)—t)

= (o(wx + b) — t)a%(a(wx +b) —t)

= (o(wx + b) — t)o’ (wx + b)i(wx + b)

ow
= (o(wx + b) — t)o’(wx + b)x

Univariate Chain Rule Computation (2)

Similarly for gF

L= %(O’(WX + b) — t)?
oL 0 1
o5 = 35 |5(o(wx+b) - t)?
0 (o(wx + b) — t)?

T 20b
= (o(wx + b) — t);b(a(wx +b) —t)

= (o(wx + b) — t)o’ (wx + b);b(wx + b)
= (o(wx + b) — t)o'(wx + b)

Univariate Chain Rule Computation (2)

Similarly for 2 ab

= 5(o(wx +b) —t)
oL 01
o5 = 35 |5(o(wx+b) - t)?
10
= Ea(a(wx—kb)— 1.“)2
= (o (Wx+b)—t) ((wx +b) —t)

= (o(wx + b) — t)o’ (wx + b);b(wx + b)
= (o(wx + b) — t)o'(wx + b)

Q: What are the disadvantages of this approach?

A More Structured Way to Compute the Derivatives

9L _y s
dy_y
z=wx+b de dC
— =—0'(2)
y:o’(z) dz dy
1) oc dL
L=5-1) ow dz *
oL _dc
ob dz

Less repeated work; easier to write a program to efficiently compute
derivatives

Computation Graph

We can diagram out the computations using a computation graph.

Compute Loss
—_—

t

e

Compute Derivatives
-

Z.

The nodes represent all the inputs and computed quantities

The edges represent which nodes are computed directly as a
function of which other nodes.

Chain Rule (Error Signal) Notation

» Use y to denote the derivative %
» sometimes called the error signal
» This notation emphasizes that the error signals are just values
our program is computing (rather than a mathematical
operation).

» This is notation introduced by Prof. Roger Grosse, and not
standard notation

z=wx—+b y=y-t
y:g(z) ?:yal(z)
1) w=2zX
= (y—t _
L=30-1) b=z

Multiclass Logistic Regression Computation Graph

In general, the computation graph fans out:

w11 Wio
b1
t 7= wyx + b
L1——21—>Y1 k, j
STy
CU — 2 » / Yk = Z,
2 —Yz~ S e
b/T b2 ﬁz—Ztklogyk
2 w21 k
w22

There are multiple paths for which a weight like wy; affects the loss
L.

Multivariate Chain Rule

Suppose we have a function f(x,y) and functions x(t) and y(t).
(All the variables here are scalar-valued.) Then

d Of dx Of dy
Ef(x(t)vy(t)) aX dt + 5 ay dt

N
!

Multivariate Chain Rule Example

If f(x,y) =y + e, x(t) =cost and y(t) = t2...

d _ Ofdx Of dy
i x(),y(t) = 5o+ By dt

= (ye?¥)-(—sint) + (1 + xe¥) -

2t

Multivariate Chain Rule Notation

Mathematical expressions
to be evaluated

df _ofdr ofdy

_ofds ™
< >/I

Values already computed
by our program

In our notation

The Backpropagation Algorithm

» Backpropagation is an algorithm to compute gradients
efficiency
» Forward Pass: Compute predictions (and save intermediate
values)
» Backwards Pass: Compute gradients
» The idea behind backpropagation is very similar to dynamic
programming
» Use chain rule, and be careful about the order in which we
compute the derivatives

Backpropagation Example (on the board)

(1) (2)

2
W, wg) ?(1;; w§2)
bgl)\\, . \\ t

1*»2’ 11— 1—>y 1

></f

CE‘Q—»ZQ—»]’LZ

<1>/ T <2>/ T
b /:Uu) b /:U@)
w(l) 21 (2) “21

Backpropagation for a MLP

w 2 (2)
1) 1 "ne
012 12

b?lt‘\i b2
| \\' i \\ tX Backward pass:

Ci—>21—>h1—— Y1 L=1

- P
B V= £ 1)

Forward pass: ko = Yk ,
zi = Z (1)xj + b hi = ZWW;E,)
k
h; = g‘(zl-) Z:FIU/(Zi)
Z W(2)h + b(z) W,S-l) = ZiX;
1 b(l) =7z

L=35 > vk — te)?

k

Backpropagation for a MLP (Vectorized)

11'(‘2) ”'(li
bV bﬁ”\ Backward pass:
&\ \\ tl 7o
y

$1—>zl_.h1—>y1 - l
>< =Z(y—t)
bV // (z»//" t2 W(2) = yhT
w. l) u w. ijj v g? m = y
Forward pass: R L=
s — Wiy | p h=w®'y
h:o‘(z) 2:hOO'(Z)
y = W®h+b® V‘Q:fxT
b(l) =%

1
L="|ly—t|]?
Sy =t

Implementing Backpropagation

0z

Incoming messages
sum to

z
Forward pass: Each node... Backward pass: Each node...

> receives messages (inputs) » receives messages (error
from its children signals) from its children

> uses these messages to > uses these messages to
compute its own values compute error signal

> passes messages to its > passes messages to its
parents parents

This algorithm provides modularity!

In PyTorch (from tutorial 4)

model = nn.Linear (784, 10) # classification model
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), 1lr=0.005)

zs = model (xs)

loss = criterion(zs, ts)
loss.backward()
optimizer.step()
optimizer.zero_grad()

forward pass

compute the loss (cost)

backwards pass (error signals)
update the parameters

a clean up step

Backpropagation in practice

» Backprop is used to train the overwhelming majority of neural
nets today.

» Even optimization algorithms much fancier than gradient
descent (e.g.~second-order methods) use backprop to compute
the gradients.

» Despite its practical success, backprop is believed to be neurally
(biologically) implausible.

» No evidence for biological signals analogous to error derivatives.

» All the biologically plausible alternatives we know about learn
much more slowly (on computers).

» So how on earth does the brain learn?

Reference

Most of the backpropagation slides are based on the works of:

» Roger Grosse
» Jimmy Ba

	Biological and Artificial Neurons
	Demo
	Backpropagation

