
CSC321 Neural Networks and Machine Learning

Lecture 4

January 29, 2020

Agenda

I Biological and Artificial Neurons
I Neural Network
I Multi-Layer Perceptron (Fully-connected layers)
I Backpropagation

Biological and Artificial Neurons

Neuron

Neuron Anatomy

I The dendrites, which are connected to other cells that
provides information.

I The cell body, which consolidates information from the
dendrites.

I The axon, which is an extension from the cell body that passes
information to other cells.

I The synapse, which is the area where the axon of one neuron
and the dendrite of another connect.

What does a neuron do?

I Consolidates “information” (voltage difference) from its
dendrites

I If the total activity in a neuron’s dendrite lowers the voltage
difference enough, the entire cell depolarizes and the neuron
fires

I The voltage signal spread along the axon and to the synapse,
then to the next nuerons

I Neuron sends information to the next cell

What makes a neuron fires?

Neuron can fire in response to. . .

I retinal cells
I certain edges, lines, angles, movements
I hands and faces (in primates)
I specific people like Jennifer Aniston (in humans)

I Existence of “Grandmother cells” is still contested

An Artificial Neural Network (Multi-Layer Perceptron)

Idea:

I Use a simplified (mathematical) model of a neuron as building
blocks

I Connect the neurons together in the following way:

I An input layer: feed in input features (e.g. like retinal cells in
your eyes)

I A number of hidden layers: don’t have specific meaning
I An output layer: interpret output like a “grandmother cell”

But what do the neurons mean?

I Use xi to encode the input
I e.g. pixels in an image
I like the neurons that are connected to the receptors in the eye

I Use y to encode the output (of a binary classification problem)
I e.g. cancer vs. not cancer

Modeling Individual Neurons

I x1, x2, ... = inputs to the neuron
I w1,w2, ... = the neuron’s weights
I b = the neuron’s bias
I f = an activation function
I f (

∑
i xiwi + b) = the neuron’s activation (output)

Activation Functions: common choices

Common Choices:

I Sigmoid activation
I Tanh activation
I ReLU activation

Rule of thumb: Start with ReLU activation. If necessary, try tanh.

Activation Function: Sigmoid

I somewhat problematic due to gradient signal
I all activations are positive

Activation Function: Tanh

I scaled version of the sigmoid activation
I also somewhat problematic due to gradient signal
I activations can be positive or negative

Activation Function: ReLU

I most often used nowadays
I all activations are positive
I easy to compute gradients
I can be problematic if the bias is too large and negative, so the

activations are always 0

Linear Regression as a Single Neuron

I x1, x2, ... : inputs
I w1,w2, ... : components of the weight vector w
I b : the bias
I f : identity function
I y =

∑
i xiwi + b = wT x + b

Binary Classification (Logistic Regression) as a Single
Neuron

I x1, x2, ... : inputs
I w1,w2, ... : components of the weight vector w
I b : the bias
I f = σ
I y = σ(

∑
i xiwi + b) = σ(wT x + b)

Multi-Classification (Logistic Regression) as a Neural
Network

We use K neurons (one for each class):

I x1, x2, ... : inputs
I w1,1,w1,2, ... : components of the weight matrix W
I b1, b2, ... : components of the bias vector b
I f = softmax : applied to the entire vector of values
I y = softmax(W x + b) : outputs of K neurons

Limits of Linear Classification

I Single neurons (linear classifiers) are very limited in expressive
power.

I XOR is a classic example of a function that’s not linearly
separable.

I From homework 2, this data set is not linearly separable:

x t

-1 1
1 0
3 1

MNIST Digit Recognition (Tutorial 4)

I Input: An 28x28 pixel image
I x is a vector of length 784

I Target: The digit represented in the image
I t is a one-hot vector of length 10

I Model (from tutorial 4)
I y = softmax(W x + b)

Adding a Hidden Layer

Two layer neural network

I Input size: 784 (number of features)
I Hidden size: 50 (we choose this number)
I Output size: 10 (number of classes)

Side note about machine learning models

When discussing machine learning models, we usually

I first talk about how to make predictions assume the weights
are trained

I then talk about how to traing the weights

Often the second step requires gradient descent or some other
optimization method

Making Predictions: computing the hidden layer

h1 = f (
784∑
i=1

w (1)
1,i xi + b(1)

1)

h2 = f (
784∑
i=1

w (1)
2,i xi + b(1)

2)

...

Making Predictions: computing the output (pre-activation)

z1 =
50∑

j=1
w (2)

1,j hj + b(2)
1

z2 =
50∑

j=1
w (2)

2,j hj + b(2)
2

...

Making Predictions: applying the output activation

z =


z1
z2
· · ·
z10


y = softmax(z)

Making Predictions: Vectorized

h = f (W (1)x + b(1))
z = f (W (2)h + b(2))
y = softmax(z)

Example: Small Neural Network

From homework 2, this data set is not linearly separable (i.e. we
can’t correctly classify all 3 points using logistic regression, or using
a single neuron)

x t

-1 1
1 0
3 1

Can we come up with a neural network with two hidden units to
solve this problem?

Use RELU activation.

Example: Neural Network

h1 = relu(−3x)
h2 = relu(x)
y = relu(h1 + h2 − 2)

x t h1 h2 y

-1 1 3 0 1
1 0 0 1 0
3 1 0 3 1

Feature Learning
Neural nets can be viewed as a way of learning features:

The goal is for these features to become linearly separable:

Demo

Expressive Power: Linear Layers (No Activation Function)

I We’ve seen that there are some functions that linear classifiers
can’t represent. Are deep networks any better?

I Any sequence of linear layers (with no activation function) can
be equivalently represented with a single linear layer.

y = W (3)W (2)W (1)︸ ︷︷ ︸ x

= W ′x

Deep linear networks are no more expressive than linear regression!

Expressive Power: MLP (nonlinear activation)

I Multilayer feed-forward neural nets with nonlinear activation
functions are universal approximators: they can approximate
any function arbitrarily well.

I This has been shown for various activation functions
(thresholds, logistic, ReLU, etc.)

I Even though ReLU is “almost” linear, it’s nonlinear enough!

Universality for binary inputs and targets

I Hard threshold hidden units, linear output
I Strategy: 2D hidden units, each of which responds to one

particular input configuration
I Only requires one hidden layer, though it needs to be extremely

wide!

Limits of universality

I You may need to represent an exponentially large network.
I If you can learn any function, you’ll just overfit.
I Really, we desire a compact representation!

Backpropagation

Training Neural Networks

I How do we find good weights for the neural network?
I We can continue to use the loss functions:

I cross-entropy loss for classification
I square loss for regression

I The neural network operations we used (weights, etc) are
continuous

We can use gradient descent!

Gradient Descent Recap

I Start with a set of parameters (initialize to some value)
I Compute the gradient ∂E

∂w for each parameter (also ∂E
∂b)

I This computation can often vectorized
I Update the parameters towards the negative direction of the

gradient

Gradient Descent for Neural Networks

I Conceptually, the exact same idea!
I However, we have more parameters than before

I Higher dimensional
I Harder to visualize
I More “steps”

Since ∂E
∂w , is the average of ∂L

∂w across training examples, we’ll focus
on computing ∂L

∂w

Univariate Chain Rule

Recall: if f (x) and x(t) are univariate functions, then

d
dt f (x(t)) = df

dx
dx
dt

Univariate Chain Rule for Logistic Least Square

Recall: Univariate logistic least squares model (from homework 2)

z = wx + b
y = σ(z)

L = 1
2(y − t)2

Let’s compute the loss derivative

Univariate Chain Rule Computation (1)

How you would have done it in calculus class (and maybe homework
2):

L = 1
2(σ(wx + b)− t)2

∂L
∂w = ∂

∂w

[1
2(σ(wx + b)− t)2

]
= 1

2
∂

∂w (σ(wx + b)− t)2

= (σ(wx + b)− t) ∂

∂w (σ(wx + b)− t)

= (σ(wx + b)− t)σ′(wx + b) ∂

∂w (wx + b)

= (σ(wx + b)− t)σ′(wx + b)x

Univariate Chain Rule Computation (2)
Similarly for ∂L

∂b

L = 1
2(σ(wx + b)− t)2

∂L
∂b = ∂

∂b

[1
2(σ(wx + b)− t)2

]
= 1

2
∂

∂b (σ(wx + b)− t)2

= (σ(wx + b)− t) ∂
∂b (σ(wx + b)− t)

= (σ(wx + b)− t)σ′(wx + b) ∂
∂b (wx + b)

= (σ(wx + b)− t)σ′(wx + b)

Q: What are the disadvantages of this approach?

Univariate Chain Rule Computation (2)
Similarly for ∂L

∂b

L = 1
2(σ(wx + b)− t)2

∂L
∂b = ∂

∂b

[1
2(σ(wx + b)− t)2

]
= 1

2
∂

∂b (σ(wx + b)− t)2

= (σ(wx + b)− t) ∂
∂b (σ(wx + b)− t)

= (σ(wx + b)− t)σ′(wx + b) ∂
∂b (wx + b)

= (σ(wx + b)− t)σ′(wx + b)

Q: What are the disadvantages of this approach?

A More Structured Way to Compute the Derivatives

z = wx + b
y = σ(z)

L = 1
2(y − t)2

dL
dy = y − t

dL
dz = dL

dy σ
′(z)

∂L
∂w = dL

dz x

∂L
∂b = dL

dz
Less repeated work; easier to write a program to efficiently compute
derivatives

Computation Graph

We can diagram out the computations using a computation graph.

The nodes represent all the inputs and computed quantities

The edges represent which nodes are computed directly as a
function of which other nodes.

Chain Rule (Error Signal) Notation

I Use y to denote the derivative dL
dy

I sometimes called the error signal
I This notation emphasizes that the error signals are just values

our program is computing (rather than a mathematical
operation).

I This is notation introduced by Prof. Roger Grosse, and not
standard notation

z = wx + b
y = σ(z)

L = 1
2(y − t)2

y = y − t
z = yσ′(z)
w = z x
b = z

Multiclass Logistic Regression Computation Graph

In general, the computation graph fans out:

zl =
∑

j
wljxj + bl

yk = ezk∑
l ezl

L = −
∑

k
tk log yk

There are multiple paths for which a weight like w11 affects the loss
L.

Multivariate Chain Rule

Suppose we have a function f (x , y) and functions x(t) and y(t).
(All the variables here are scalar-valued.) Then

d
dt f (x(t), y(t)) = ∂f

∂x
dx
dt + ∂f

∂y
dy
dt

Multivariate Chain Rule Example

If f (x , y) = y + exy , x(t) = cos t and y(t) = t2. . .

d
dt f (x(t), y(t)) = ∂f

∂x
dx
dt + ∂f

∂y
dy
dt

= (yexy) · (− sin t) + (1 + xexy) · 2t

Multivariate Chain Rule Notation

In our notation

t = x dxdt + y dydt

The Backpropagation Algorithm

I Backpropagation is an algorithm to compute gradients
efficiency

I Forward Pass: Compute predictions (and save intermediate
values)

I Backwards Pass: Compute gradients
I The idea behind backpropagation is very similar to dynamic

programming
I Use chain rule, and be careful about the order in which we

compute the derivatives

Backpropagation Example (on the board)

Backpropagation for a MLP

Forward pass:
zi =

∑
j
w (1)

ij xj + b(1)
i

hi = σ(zi)

yk =
∑

i
w (2)

ki hi + b(2)
k

L = 1
2
∑

k
(yk − tk)2

Backward pass:
L = 1
yk = L(yk − tk)

w (2)
ki = ykhi

b(2)
k = yk

hi =
∑

k
ykw (2)

ki

zi = hiσ
′(zi)

w (1)
ij = zixj

b(1)
i = zi

Backpropagation for a MLP (Vectorized)

Forward pass:
z = W (1)x + b(1)

h = σ(z)
y = W (2)h + b(2)

L = 1
2 ||y− t||2

Backward pass:
L = 1
y = L(y− t)

W (2) = yhT

b(2) = y

h = W (2)T y
z = h ◦ σ′(z)

W (1) = zxT

b(1) = z

Implementing Backpropagation

Forward pass: Each node...
I receives messages (inputs)

from its children
I uses these messages to

compute its own values
I passes messages to its

parents

Backward pass: Each node...
I receives messages (error

signals) from its children
I uses these messages to

compute error signal
I passes messages to its

parents
This algorithm provides modularity!

In PyTorch (from tutorial 4)

model = nn.Linear(784, 10) # classification model
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.005)

zs = model(xs) # forward pass
loss = criterion(zs, ts) # compute the loss (cost)
loss.backward() # backwards pass (error signals)
optimizer.step() # update the parameters
optimizer.zero_grad() # a clean up step

Backpropagation in practice

I Backprop is used to train the overwhelming majority of neural
nets today.

I Even optimization algorithms much fancier than gradient
descent (e.g.~second-order methods) use backprop to compute
the gradients.

I Despite its practical success, backprop is believed to be neurally
(biologically) implausible.

I No evidence for biological signals analogous to error derivatives.
I All the biologically plausible alternatives we know about learn

much more slowly (on computers).
I So how on earth does the brain learn?

Reference

Most of the backpropagation slides are based on the works of:

I Roger Grosse
I Jimmy Ba

	Biological and Artificial Neurons
	Demo
	Backpropagation

