
CSC321 Neural Networks and Machine Learning

Lecture 3

January 22, 2020



Agenda

First hour:

I Multi-class classification
I Feature Mapping

Second hour:

I k-Nearest Neighbours
I Generalization



Announcement

I Homework 2 is due tomorrow
I Project 1 is due next week
I Homework 1 is graded

I Very well done!
I Solutions are on Quercus
I Remark request due Jan 28th, 9pm on Markus



Review

1. In a supervised learning setup, what does x (i)
j represent?

2. What is the shape of the vector ∂E
∂w?

3. What does α represent in the gradient descent step:
w← w− α ∂E

∂w?
4. What can happen if α is too large? Too small?
5. What is the batch size? What happens if it is too large? Too

small?



Classification



Classification Setup

I Data: (x (1), t(1)), (x (2), t(2)), . . . (x (N), t(N))
I The x (i) are called inputs
I The t(i) are called targets

In classification, the t(i) are discrete.

In binary classification, we used the labels t ∈ {0, 1}. Training
examples with

I t = 1 is called a positive example
I t = 0 is called a negative example (sorry)



Multi-class classification

Instead of there being two targets (pass/fail, cancer/not cancer,
before/after 2000), we have K > 2 targets.

Example:

I Beatles (K = 4):
I John Lennon, Paul McCartney, George Harrison, Ringo Starr

I Pets (K = something large):
I cat, dog, hamster, parrot, python, . . .



Representing the targets

We use a one-hot vector to represent the target:

t = (0, 0, ..., 1, ..., 0)

This vector contains K − 1 zeros, and a single 1 somewhere.

Each index (column) in the vector represents one of the classes.



Representing the prediction

The prediction y will also be a vector. Like in logistic regression
there will be a linear part, and an activation function.

Linear part: z = WTx + b

So far, this is like having K separate logistic regression models, one
for each element of the one-hot vector.

Q: What are the shapes of z, W, x and b?



Activation Function

Instead of using a sigmoid function, we instead use a softmax
activation function:

yk = softmax(z1, ..., zK )k = ezk∑K
m=1 ezm

The predictions yk is now a probability distribution over the
classes!



Why softmax?

I Softmax is like the multi-class equivalent of sigmoid
I Softmax is a continuous analog of the “argmax” function
I If one of the zk is much larger than the other, then the softmax

will be approximately the argmax, in the one-hot encoding



Cross-Entropy Loss

The cross-entropy loss naturally generalizes to the multi-class case:

L(y, t) = −
K∑

k=1
tk log(yk)

= −tT log(y)

Recall that only one of the tk is going to be 1, and the rest are 0.



Summary

Hypothesis
y = softmax(WTx + b)

Loss
Function L(y, t) = −tT log(y)

Optimization
Problem min

W,b
E(W,b)

Gradient
Descent W←W− α ∂E

∂W ,b← b− α∂E
∂b



Example: Beatle Recognition

Given a 100x100 pixel colour image of a face of a Beatle, identify
the Beatle

Four possible labels:

I John Lennon
I Paul McCartney
I George Harrison
I Ringo Starr



Aside: Representing an image

This is what John Lennon looks like to a computer:



Image as a vector of features



Features and Targets

Each of our input images are 100x100 pixels

y = softmax(WTx + b)

Q: What will be the length of our input (feature) vectors x?

Q: What will be the length of our one-hot targets t?

Q: What are the shapes of W and b?

Q: How many (scalar) parameters are in our model, in total?



Feature Mapping



Computing New Features

In homework 2, we saw an example where computing new features
could make a more powerful model.

I x (1) = −1, t(1) = 1
I x (2) = 1, t(2) = 0
I x (3) = 3, t(3) = 1



Example

Suppose we want to model the following data (from Bishop 2006):

Q: Will the model y = wx + b fit the data well?



Linear Regression



Polynomial Feature mapping

One option to build a more powerful model is to fit a low-degree
polynomial:

y = w3x3 + w2x2 + w1x + w0

The above model can still be framed as linear regression, by taking

x =


1
x
x2

x3


And we can find w1, w2, w3 and w0 = b in the usual way.



Fitting a degree 3 polynomial

Better fit!



Higher degree polynomials
What about using an even higher degree polynomial?

I This model fits the training data very well (cost = 0)
I . . . but we don’t expect this model to generalize to new data

generated in the same way
I More parameter = more powerful model = more prone to
overfitting



Higher degree polynomials
What about using an even higher degree polynomial?

I This model fits the training data very well (cost = 0)
I . . . but we don’t expect this model to generalize to new data

generated in the same way
I More parameter = more powerful model = more prone to
overfitting



Feature Mapping in General

Computing the right features is very important. For example, if you
want to predict whether someone will click on an ad for a machine
learning book, you could compute:

I Last ad that they clicked on
I Last ad that they clicked on related to a book
I Time of day that this person is active
I How often this person clicks on ads

Q: How do you determine which features to include?



K-Nearest Neighbours



Same Example: Beatle Recognition

Given a 100x100 pixel colour image of a face of a Beatle, identify
the Beatle

Four possible labels:

I John Lennon
I Paul McCartney
I George Harrison
I Ringo Starr



Linear Classification

We already saw today that we can frame the problem as a logistic
regression problem

z = Wx + b
t = softmax(z)



Another approach: 1-nearest neighbour

For a new image x for which we want to make a prediction:

I Find the training photo/vector x(i) that is “closest” to x
I Output the prediction y = t(i)



Are two images “close”?
Determining “closeness” using vector representations a and b of
images

I Euclidean distance:
||a− b|| =

√∑
i(ai − bi)2 =

√
(a− b)T · (a− b)

I Cosine distance: cos(θab) = a·b
||a||||b||



Distances Measure Choice

Which distance measure makes sense?

Depends on the invariance that you want:

I Cosine distance is scale invariant: dist(a,b) = dist(ma, kb)
for scalars m and K

I Euclidean distance is shift invariant:
dist(a,b) = dist(a + c,b + c) for a vector c

We’ll use Euclidean distance in the next few slides, and cosine
distance in project 1.



Example: 1-nearest neighbour
Task:

I Classify the new examples “+”
I Labels for the training set are GREEN and RED
I Choose Euclidean distance



Example: 3-nearest neighbour

What if we use a larger set of neighbours?



Example: 5-nearest neighbour



Choice of k

I If k is too small, then our model might be too “noisy”
I Small change in x often changes the prediction
I Model is prone to overfitting

I If k is too large, then our model might be too “simple”
I Extreme example: k = size of training set



kNN vs Linear Models

These two families of models are very different!

I Linear models have linear decision boundaries, and kNN
models have arbitrary decision boundaries

I Linear models have parameters (weights) that we choose via
solving an optimization problem

I The k-Nearest Neighbour model requires the entire training
data to be available to make predictions



Remaining questions

I How do we choose k?
I How do we choose between different models?
I How do we know how well a model will perform on new data?



Generalization



Questions

I How do we choose k?
I How do we choose which features to include?
I How do we choose between different models?
I How do we know how well a model will perform on new
data?



The Training Set

The training set is used

I to determine the value of the parameters
I (in kNN) to make predictions

The model’s prediction accuracy over the training set is called the
training accuracy.

Q: Can we use the training accuracy to estimate how well a model
will perform on new data?

I No! It is possible for a model to fit well to the training set, but
fail to generalize

I We want to know how well the model performs on new data
that we didn’t already use to optimize the model



The Training Set

The training set is used

I to determine the value of the parameters
I (in kNN) to make predictions

The model’s prediction accuracy over the training set is called the
training accuracy.

Q: Can we use the training accuracy to estimate how well a model
will perform on new data?

I No! It is possible for a model to fit well to the training set, but
fail to generalize

I We want to know how well the model performs on new data
that we didn’t already use to optimize the model



Poor Generalization



Overfitting and Underfitting

Underfitting:

I The model is simple and doesn’t fit the data
I The model does not capture discriminative features of the data

Overfitting:

I The model is too complex and does not generalize
I The model captures information about patterns in training set

that happened by chance
I e.g. Ringo happens to be always wearing a red shirt in the

training set
I Model learns: high red pixel content => predict Ringo



Preventing Overfitting

I Use a larger training set (expensive, often not feasible)
I Use a smaller network (requires starting over, might underfit)
I Other techniques (we’ll explore later)



The Test Set

We set aside a test set of labelled examples.

The model’s prediction accuracy over the test set is called the test
accuracy.

The purpose of the test set is to give us a good estimate of how
well a model will perform on new data.

Q: In general, will the test accuracy be higher or lower than the
training accuracy?



Model Choices

But what about decisions like:

I Which k to use?
I Which model to use?

Q: Why can’t we use the test set to determine which model we
should deploy?

I If we use the test set to make modeling decisions, then we will
overestimate how well our model will perform on new data!

I We are “cheating” by “looking at the test”



Model Choices

But what about decisions like:

I Which k to use?
I Which model to use?

Q: Why can’t we use the test set to determine which model we
should deploy?

I If we use the test set to make modeling decisions, then we will
overestimate how well our model will perform on new data!

I We are “cheating” by “looking at the test”



The Validation set

We therefore need a third set of labeled data called the validation
set

The model’s prediction accuracy over the validation set is called the
validation accuracy.

This dataset is used to:

I Make decisions about models that is not continuous and
can’t be optimized via gradient descent

I Example: choose k, choose which features xj to use, choose α,
. . .

I These model settings are called hyperparameters
I The validation set is used to optimize hyperparameters



Splitting the data set

Example split:

I 60% Training
I 20% Validation
I 20% Test

The actual split depends on the amount of data that you have.

If you have more data, you can get a way with a smaller %
validation and set.



Detecting Overfitting

Learning curve:

I x-axis: epochs or iterations
I y-axis: cost, error, or accuracy

Q: In which epochs is the model overfitting? Underfitting?

Q: Why don’t we plot the test accuracy plot?



Strategies to Preventing Overfitting

I Collect more data: always the best first thing to try
I Use a simpler model: doesn’t work well in practice
I Early-stopping: stop training before training accuracy

convergences
I In practice, save (or checkpoint) the weights after every E

epochs. Use the weights that produce the highest validation
accuracy

I Use a training strategy that reduces overfitting:
I Example: weight decay



Weight Decay Idea

Idea: Penalize large weights, by adding a term (e.g.
∑

k w2
k ) to

the cost function

Q: Why is it not ideal to have large (absolute value) weights?

Because large weights mean that the prediction relies a lot on the
content of one pixel (or one feature)



Weight Decay Idea

Idea: Penalize large weights, by adding a term (e.g.
∑

k w2
k ) to

the cost function

Q: Why is it not ideal to have large (absolute value) weights?

Because large weights mean that the prediction relies a lot on the
content of one pixel (or one feature)



Weight Decay

I L1 regularization: add a term
∑D

j=1 |wj | to the cost function
I Mathematically, this term encourages weights to be exactly 0

I L2 regularization: add a term
∑D

j=1 w2
j to the cost function

I Mathematically, in each iteration the weight is pushed towards 0
I Combination of L1 and L2 regularization: add a term∑D

j=1 |wj |+ w2
j to the cost function



Example: Weight Decay for Regression

Cost function:

E(w, b) = 1
2N

∑
i

((wx(i) + b)− t(i))2

Cost function with weight decay:

EWD(w, b) = 1
2N

∑
i

((wx(i) + b)− t(i))2 + λ
∑

j
w2

j



Weight Decay Nomanclature

EWD(w, b) = 1
2N

∑
i

((wx(i) + b)− t(i))2 + λ
∑

j
w2

j

∂EWD
∂wj

= ∂E
∂wj

+ λ2wj

So the gradient descent update rule becomes:

wj ← wj − α
(
∂E
∂wj

+ 2λwj

)



Project 1 sklearn weight decay

I In project 1, you may get different answers from sklearn’s
logistic regression

I Because of stochastic gradient descent
I Because sklearn’s logistic regression applies weight decay by

default
I See https://scikit-

learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html



Reference

Some of these slides are based on the works of:

I Michael Guerzhoy
I Derek Hoiem
I Friedman, Hastie and Tibshirani
I Roger Grosse
I Bishop


	Classification
	Feature Mapping
	K-Nearest Neighbours
	Generalization

