
CSC321 Neural Networks and Machine Learning

Lecture 2

January 15, 2020

Agenda

First hour:

I Homework 1 (one clarification regarding notation)
I Gradient Descent
I Vectorization

Second hour:

I Linear Classification
I Logistic Regression

Homework 1 notation

There was an update to question 4 on Jan 13th.

Q: Can we write the sum
∑N

i=1 |xi | like this:

N∑
i=1
|xi | =

{∑N
i=1 xi ifxi >= 0∑N
i=1−xi otherwise

No, we can’t! Each of x1, x2, ..., xN could have different signs!

Homework 1 notation

There was an update to question 4 on Jan 13th.

Q: Can we write the sum
∑N

i=1 |xi | like this:

N∑
i=1
|xi | =

{∑N
i=1 xi ifxi >= 0∑N
i=1−xi otherwise

No, we can’t! Each of x1, x2, ..., xN could have different signs!

Regression Review

We would like to make predictions about some continuous value
(e.g. exam grade) given some input (e.g. assignment grade)

I Data: (x (1), t(1)), (x (2), t(2)), . . . (x (N), t(N))
I The x (i) are called inputs
I The t(i) are called targets

Linear Regression Review

Hypothesis y = wx + b

Parameters w , b

Cost Function E(w , b) = 1
2N

∑
i((wx (i) + b)− t(i))2

Goal Find w , b that minimize E(w , b)

Optimization

How do we find w , b that minimize E(w , b)?

Last time:

I Grid search: slow, especially if w is high dimensional
I Direct solution: won’t work for many models and loss functions

Today: Gradient Descent

Gradient Descent

Minimizing a scalar function f(x)

Gradient Descent is an iterative method used to find the minima of
a function.

We’ll start by thinking about a scalar function (1D)

To minimize a function f(x), we start with a random point x0 and
iterate an update rule that we will derive.

Deriving Gradient Descent Update
Consdier this function f(x)

Q: If we want to move the red point closer to the minima, do we
move left or right?

Q: At the red point x , is the derivative f ′(x) positive or negative?

We want to move x towards the negative direction of the
gradient!

Deriving Gradient Descent Update
Consdier this function f(x)

Q: If we want to move the red point closer to the minima, do we
move left or right?

Q: At the red point x , is the derivative f ′(x) positive or negative?

We want to move x towards the negative direction of the
gradient!

Deriving Gradient Descent Update
Consdier this function f(x)

Q: If we want to move the red point closer to the minima, do we
move left or right?

Q: At the red point x , is the derivative f ′(x) positive or negative?

We want to move x towards the negative direction of the
gradient!

How much do we move?

Q: Should we make a larger jump at the red point or green?

The larger |f ′(x)|, the more we should move. We slow down close
to a minima.

x ← x − αf ′(x)

The term α is the learning rate

How much do we move?

Q: Should we make a larger jump at the red point or green?

The larger |f ′(x)|, the more we should move. We slow down close
to a minima.

x ← x − αf ′(x)

The term α is the learning rate

Gradient Descent for Linear Regression (2D)
The same idea holds in higher dimensions:

w ← w − α ∂E
∂w

b ← b − α∂E
∂b

Gradient Descent for Linear Regression (high dimensional)

Or, in general:

w← w− α ∂E
∂w

∂E
∂w =

∂E
∂w1
...
∂E

∂wD

It turns out that the gradient is the direction of the steepest
descent.

Gradient Descent for Grade Prediction

We’ll initialize w = 0 and b = 0 (arbitrary choice)

We’ll also choose α = 0.5

Gradient Descent: Step 0

Gradient Descent: Step 1

Gradient Descent: Step 2

Gradient Descent: Step 3

Gradient Descent: Step 4

Gradient Descent: when to stop?

In theory:

I Stop when w and b stop changing (convergence)

In practice:

I Stop when E almost stops changing (another notion of
convergence)

I Stop until we’re tired of waiting

Gradient Descent: how to choose the learning rate?

I If α is too small, then training will be slow
I Take a long time to converge

I If α is too large, then we can have divergence!
I Take a long time to converge

Computing the gradient

To compute the gradient ∂E
∂w

∂E
∂w = 1

N

N∑
i=1

∂L(y (i), t(i))
∂w

But this computation can be expensive if N is large!

Solution: estimate ∂E
∂w using a subset of the data

Computing the gradient

To compute the gradient ∂E
∂w

∂E
∂w = 1

N

N∑
i=1

∂L(y (i), t(i))
∂w

But this computation can be expensive if N is large!

Solution: estimate ∂E
∂w using a subset of the data

Stochastic Gradient Descent

Full batch gradient descent:

1
N

N∑
i=1

∂L(y (i), t(i))
∂w

Stochastic Gradient Descent:

Estimate the above quantity by computing the average of ∂L(y (i),t(i))
∂w

across a small number of i ’s

The set of examples that we use to estimate the gradient is called a
mini-batch.

The number of examples in each mini-batch is called the
mini-batch size or just the batch size

Stochastic Gradient Descent Algorithm

In theory, any way of sampling a mini-batch is okay.

In practice, SGD is almost always implemented like this:

repeat until convergence:
group the data set into mini-batches of size k
for each mini-batch:

estimate the gradient using the mini-batch
update the parameters based on the estimate

I Each pass of the inner loop is called an iteration.
I One iteration = one update for each weight

I Each pass of the outer loop is called an epoch.
I One epoch = one pass over the data set

Stochastic Gradient Descent Algorithm

In theory, any way of sampling a mini-batch is okay.

In practice, SGD is almost always implemented like this:

repeat until convergence:
group the data set into mini-batches of size k
for each mini-batch:

estimate the gradient using the mini-batch
update the parameters based on the estimate

I Each pass of the inner loop is called an iteration.
I One iteration = one update for each weight

I Each pass of the outer loop is called an epoch.
I One epoch = one pass over the data set

Iterations, Epochs, and Batch Size

Suppose we have 1000 examples in our training set.

Q: How many iterations are in one epoch if our batch size is 10?

Q: How many iterations are in one epoch if our batch size is 50?

Iterations, Epochs, and Batch Size

Suppose we have 1000 examples in our training set.

Q: How many iterations are in one epoch if our batch size is 10?

Q: How many iterations are in one epoch if our batch size is 50?

Batch size choice

Q: What happens if the batch size is too large?

Q: What happens if the batch size is too small?

Vectorization

Linear Regression Vectorization

Use vectors rather than writing

E(w, b) = 1
2N

∑
i((wx(i) + b)− t(i))2

So we have:

y = Xw + b1,where

X =

x (1)

1 x (1)
2 ... x (1)

D
x (2)

1 x (2)
2 ... x (2)

D
...

x (N)
1 x (N)

2 ... x (N)
D

 ,w =

w1
w2
...
wD

 , y =

y (1)

y (2)

...

y (N)

 , t =

t(1)

t(2)

...

t(N)

(You can also fold the bias b into the weight w, but we won’t.)

Vectorized Loss Function

After vectorization, the loss function becomes:

E(w) = 1
2N (y− t)T (y− t)

or

E(w) = 1
2N (Xw + b1− t)T (Xw + b1− t)

Vectorized Gradient Descent

b ← b − α∂E
∂b

w← w− α ∂E
∂w

Where ∂E
∂w is the vector of partial derivatives:

∂E
∂w =

∂E
∂w1
...
∂E

∂wD

Why vectorize?

Vectorization is not just for mathematical elegance. (Tutorial 2)

When using Python with numpy/PyTorch, code that performs
vector computations is faster than code that loops.

Same holds for many other high level languages and software.

Classification

Classification Setup

I Data: (x (1), t(1)), (x (2), t(2)), . . . (x (N), t(N))
I The x (i) are called inputs
I The t(i) are called targets

In classification, the t(i) are discrete.

In binary classification, we’ll use the labels t ∈ 0, 1. Training
examples with

I t = 1 is called a positive example
I t = 0 is called a negative example (sorry)

Classification Running Example
I x (i) represents a person’s assignment grade
I t(i) represents whether that person had a “high” exam grade

(arbitrary cutoff)

Q: Why not use regression?

Why can’t we set up this problem as a regression problem?

Use the model:

y = wx + b

Our prediction for t would be 1 if y >= 0.5, and 0 otherwise.

With the loss function

L(y , t) = 1
2(y − t)2

And minimize the cost function via gradient descent?

Classification as Regression: Problem

If we have L(y , t) = 1
2(y − t)2, then points that are correctly

classified will still have high loss!

(blue dotted line above = decision boundary)

The Problem (continued)

Example: a point on the top right

I Model makes the correct prediction for point on top right
I However, (y − t)2 is large
I So we are penalizing our model, even though it is making the

right prediction!

Q: Why not use classification error?

Why not still use the model:

y =
{
1 if wTx > 0
0 otherwise

But use this loss function instead:

L(y , t) =
{
0 if y = t
1 otherwise

Gradient Descent Requires a differentiable Loss function

This loss function is not differentiable!

L(y , t) =
{
1 if y = t
0 otherwise

So we cannot use gradient descent!

(The notes talk about perceptron learning rule, but we’ll skip that.)

Ideal loss function

For a positive example:

I If y = wx + b is large and positive, the loss should be small
I If y = wx + b is close to zero, the loss should be moderate
I If y = wx + b is large and negative, the loss should be large

Towards the Ideal Loss Function

To have the desired loss function behaviour, we need to do two
things:

1. Change the model by adding a nonlinearity or activation
function

2. Use the cross-entropy loss with our new model

Logistic Regression Model

Apply a nonlinearity or activation function:

z = wx + b
y = σ(z)

where

σ(z) = 1
1 + e−z

This model for solving a classification problem is called logistic
regression

The sigmoid function

σ(z) = 1
1 + e−z

Properties:

I σ(z) is between 0 and 1
I σ(0) is 0.5

Logistic Regression Example
A logistic regression model will have this shape:

But how do we train this model?

Logistic Regression: Square Loss?

Suppose we define the model like this:

z = wx + b
y = σ(z)

LSE (y , t) = 1
2(y − t)2

The gradient of L with respect to w is (homework):

∂L
∂w = ∂L

∂y
dy
dz

∂z
∂w

= (y − t)y(1− y)x

The problem with square loss

Suppose we have a positive example (t = 1) that our model
classifies extremely wrongly (z = −5):

Then we have y = σ(z) ≈ 0.0067

Ideally, the gradient should give us strong signals regarding how to
update w to do better.

But. . . ∂L
∂w = (y − t)y(1− y)x is small!

Which means that the update w ← w − α ∂L
∂w won’t change w

much!

The problem with square loss

Suppose we have a positive example (t = 1) that our model
classifies extremely wrongly (z = −5):

Then we have y = σ(z) ≈ 0.0067

Ideally, the gradient should give us strong signals regarding how to
update w to do better.

But. . . ∂L
∂w = (y − t)y(1− y)x is small!

Which means that the update w ← w − α ∂L
∂w won’t change w

much!

The problem with square loss

Suppose we have a positive example (t = 1) that our model
classifies extremely wrongly (z = −5):

Then we have y = σ(z) ≈ 0.0067

Ideally, the gradient should give us strong signals regarding how to
update w to do better.

But. . . ∂L
∂w = (y − t)y(1− y)x is small!

Which means that the update w ← w − α ∂L
∂w won’t change w

much!

Gradient Signal

The problem with using sigmoid activation with square loss is that
we get poor gradient signal.

I The loss for a very wrong prediction (y = 0.0001) vs a wrong
prediction ($y=0.01) are similar

I This is a problem, because the gradients in the region would be
close to 0

We need a loss function that distinguishes between a wrong
prediction and a very wrong prediction.

The Cross Entropy Loss

The cross entropy loss provides the desired behaviour:

L(y , t) =
{
− log(y) if t = 1
− log(1− y) if t = 0

We can write the loss as:

L(y , t) = −t log(y)− (1− t) log(1− y)

Summary

Hypothesis
y = σ(wTx + b)

Loss
Function L(y , t) = −t log(y)− (1− t) log(1− y)

Optimization
Problem min

w,b
E(w, b)

Gradient
Descent w← w− α ∂E

∂w , b ← b − α∂E
∂b

Grade Classification Example
After running gradient descent, we’ll get a model that looks
something like:

More examples in Tutorial 3!

Project 1

I Handout is posted on the course website
I Should be done on Google Colab
I Start early!

	Gradient Descent
	Vectorization
	Classification
	More examples in Tutorial 3!

