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Agenda

First hour:

I Homework 1 (one clarification regarding notation)
I Gradient Descent
I Vectorization

Second hour:

I Linear Classification
I Logistic Regression



Homework 1 notation

There was an update to question 4 on Jan 13th.

Q: Can we write the sum
∑N

i=1 |xi | like this:

N∑
i=1
|xi | =

{∑N
i=1 xi ifxi >= 0∑N
i=1−xi otherwise

No, we can’t! Each of x1, x2, ..., xN could have different signs!
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Regression Review

We would like to make predictions about some continuous value
(e.g. exam grade) given some input (e.g. assignment grade)

I Data: (x (1), t(1)), (x (2), t(2)), . . . (x (N), t(N))
I The x (i) are called inputs
I The t(i) are called targets



Linear Regression Review

Hypothesis y = wx + b

Parameters w , b

Cost Function E(w , b) = 1
2N

∑
i((wx (i) + b)− t(i))2

Goal Find w , b that minimize E(w , b)



Optimization

How do we find w , b that minimize E(w , b)?

Last time:

I Grid search: slow, especially if w is high dimensional
I Direct solution: won’t work for many models and loss functions

Today: Gradient Descent



Gradient Descent



Minimizing a scalar function f(x)

Gradient Descent is an iterative method used to find the minima of
a function.

We’ll start by thinking about a scalar function (1D)

To minimize a function f(x), we start with a random point x0 and
iterate an update rule that we will derive.



Deriving Gradient Descent Update
Consdier this function f(x)

Q: If we want to move the red point closer to the minima, do we
move left or right?

Q: At the red point x , is the derivative f ′(x) positive or negative?

We want to move x towards the negative direction of the
gradient!
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How much do we move?

Q: Should we make a larger jump at the red point or green?

The larger |f ′(x)|, the more we should move. We slow down close
to a minima.

x ← x − αf ′(x)

The term α is the learning rate
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Gradient Descent for Linear Regression (2D)
The same idea holds in higher dimensions:

w ← w − α ∂E
∂w

b ← b − α∂E
∂b



Gradient Descent for Linear Regression (high dimensional)

Or, in general:

w← w− α ∂E
∂w

∂E
∂w =


∂E
∂w1
...
∂E

∂wD


It turns out that the gradient is the direction of the steepest
descent.



Gradient Descent for Grade Prediction

We’ll initialize w = 0 and b = 0 (arbitrary choice)

We’ll also choose α = 0.5



Gradient Descent: Step 0



Gradient Descent: Step 1



Gradient Descent: Step 2



Gradient Descent: Step 3



Gradient Descent: Step 4



Gradient Descent: when to stop?

In theory:

I Stop when w and b stop changing (convergence)

In practice:

I Stop when E almost stops changing (another notion of
convergence)

I Stop until we’re tired of waiting



Gradient Descent: how to choose the learning rate?

I If α is too small, then training will be slow
I Take a long time to converge

I If α is too large, then we can have divergence!
I Take a long time to converge



Computing the gradient

To compute the gradient ∂E
∂w

∂E
∂w = 1

N

N∑
i=1

∂L(y (i), t(i))
∂w

But this computation can be expensive if N is large!

Solution: estimate ∂E
∂w using a subset of the data
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Stochastic Gradient Descent

Full batch gradient descent:

1
N

N∑
i=1

∂L(y (i), t(i))
∂w

Stochastic Gradient Descent:

Estimate the above quantity by computing the average of ∂L(y (i),t(i))
∂w

across a small number of i ’s

The set of examples that we use to estimate the gradient is called a
mini-batch.

The number of examples in each mini-batch is called the
mini-batch size or just the batch size



Stochastic Gradient Descent Algorithm

In theory, any way of sampling a mini-batch is okay.

In practice, SGD is almost always implemented like this:

# repeat until convergence:
# group the data set into mini-batches of size $k$
# for each mini-batch:

# estimate the gradient using the mini-batch
# update the parameters based on the estimate

I Each pass of the inner loop is called an iteration.
I One iteration = one update for each weight

I Each pass of the outer loop is called an epoch.
I One epoch = one pass over the data set
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Iterations, Epochs, and Batch Size

Suppose we have 1000 examples in our training set.

Q: How many iterations are in one epoch if our batch size is 10?

Q: How many iterations are in one epoch if our batch size is 50?
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Batch size choice

Q: What happens if the batch size is too large?

Q: What happens if the batch size is too small?



Vectorization



Linear Regression Vectorization

Use vectors rather than writing

E(w, b) = 1
2N

∑
i((wx(i) + b)− t(i))2

So we have:

y = Xw + b1,where

X =


x (1)

1 x (1)
2 ... x (1)

D
x (2)

1 x (2)
2 ... x (2)

D
...

x (N)
1 x (N)

2 ... x (N)
D

 ,w =


w1
w2
...
wD

 , y =


y (1)

y (2)

...

y (N)

 , t =


t(1)

t(2)

...

t(N)



(You can also fold the bias b into the weight w, but we won’t.)



Vectorized Loss Function

After vectorization, the loss function becomes:

E(w) = 1
2N (y− t)T (y− t)

or

E(w) = 1
2N (Xw + b1− t)T (Xw + b1− t)



Vectorized Gradient Descent

b ← b − α∂E
∂b

w← w− α ∂E
∂w

Where ∂E
∂w is the vector of partial derivatives:

∂E
∂w =


∂E
∂w1
...
∂E

∂wD





Why vectorize?

Vectorization is not just for mathematical elegance. (Tutorial 2)

When using Python with numpy/PyTorch, code that performs
vector computations is faster than code that loops.

Same holds for many other high level languages and software.



Classification



Classification Setup

I Data: (x (1), t(1)), (x (2), t(2)), . . . (x (N), t(N))
I The x (i) are called inputs
I The t(i) are called targets

In classification, the t(i) are discrete.

In binary classification, we’ll use the labels t ∈ 0, 1. Training
examples with

I t = 1 is called a positive example
I t = 0 is called a negative example (sorry)



Classification Running Example
I x (i) represents a person’s assignment grade
I t(i) represents whether that person had a “high” exam grade

(arbitrary cutoff)



Q: Why not use regression?

Why can’t we set up this problem as a regression problem?

Use the model:

y = wx + b

Our prediction for t would be 1 if y >= 0.5, and 0 otherwise.

With the loss function

L(y , t) = 1
2(y − t)2

And minimize the cost function via gradient descent?



Classification as Regression: Problem

If we have L(y , t) = 1
2(y − t)2, then points that are correctly

classified will still have high loss!

(blue dotted line above = decision boundary)



The Problem (continued)

Example: a point on the top right

I Model makes the correct prediction for point on top right
I However, (y − t)2 is large
I So we are penalizing our model, even though it is making the

right prediction!



Q: Why not use classification error?

Why not still use the model:

y =
{
1 if wTx > 0
0 otherwise

But use this loss function instead:

L(y , t) =
{
0 if y = t
1 otherwise



Gradient Descent Requires a differentiable Loss function

This loss function is not differentiable!

L(y , t) =
{
1 if y = t
0 otherwise

So we cannot use gradient descent!

(The notes talk about perceptron learning rule, but we’ll skip that.)



Ideal loss function

For a positive example:

I If y = wx + b is large and positive, the loss should be small
I If y = wx + b is close to zero, the loss should be moderate
I If y = wx + b is large and negative, the loss should be large



Towards the Ideal Loss Function

To have the desired loss function behaviour, we need to do two
things:

1. Change the model by adding a nonlinearity or activation
function

2. Use the cross-entropy loss with our new model



Logistic Regression Model

Apply a nonlinearity or activation function:

z = wx + b
y = σ(z)

where

σ(z) = 1
1 + e−z

This model for solving a classification problem is called logistic
regression



The sigmoid function

σ(z) = 1
1 + e−z

Properties:

I σ(z) is between 0 and 1
I σ(0) is 0.5



Logistic Regression Example
A logistic regression model will have this shape:

But how do we train this model?



Logistic Regression: Square Loss?

Suppose we define the model like this:

z = wx + b
y = σ(z)

LSE (y , t) = 1
2(y − t)2

The gradient of L with respect to w is (homework):

∂L
∂w = ∂L

∂y
dy
dz

∂z
∂w

= (y − t)y(1− y)x



The problem with square loss

Suppose we have a positive example (t = 1) that our model
classifies extremely wrongly (z = −5):

Then we have y = σ(z) ≈ 0.0067

Ideally, the gradient should give us strong signals regarding how to
update w to do better.

But. . . ∂L
∂w = (y − t)y(1− y)x is small!

Which means that the update w ← w − α ∂L
∂w won’t change w

much!
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Gradient Signal

The problem with using sigmoid activation with square loss is that
we get poor gradient signal.

I The loss for a very wrong prediction (y = 0.0001) vs a wrong
prediction ($y=0.01) are similar

I This is a problem, because the gradients in the region would be
close to 0

We need a loss function that distinguishes between a wrong
prediction and a very wrong prediction.



The Cross Entropy Loss

The cross entropy loss provides the desired behaviour:

L(y , t) =
{
− log(y) if t = 1
− log(1− y) if t = 0

We can write the loss as:

L(y , t) = −t log(y)− (1− t) log(1− y)



Summary

Hypothesis
y = σ(wTx + b)

Loss
Function L(y , t) = −t log(y)− (1− t) log(1− y)

Optimization
Problem min

w,b
E(w, b)

Gradient
Descent w← w− α ∂E

∂w , b ← b − α∂E
∂b



Grade Classification Example
After running gradient descent, we’ll get a model that looks
something like:



More examples in Tutorial 3!



Project 1

I Handout is posted on the course website
I Should be done on Google Colab
I Start early!
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