# CSC321 Neural Networks and Machine Learning

Lecture 1

January 8, 2020

# Welcome to CSC321!

### Relevant Links

- ► Course Website: https://www.cs.toronto.edu/~lczhang/321/
- Piazza Message board: http://piazza.com/utm.utoronto.ca/spring2020/csc321
   For all course related questions
- Markus (to be announced)

## Introduction: Instructors

#### Pouria Fewzee (LEC0101)

- ▶ Prefers to be called "Pouria", but "Prof. Fewzee" is fine
- Email: pouria.fewzee [at] utoronto.ca
  - Logistic-related emails should go to Lisa
  - Please prefix email subject with 'CSC321'
- Office hours: Wednesday 12pm-2pm MN5107

#### Lisa Zhang (LEC0102) \*coordinator

- ▶ Prefers to be called "Lisa", but "Prof. Zhang" is fine
- Email: lczhang [at] cs.toronto.edu
  - Please prefix email subject with 'CSC321'
  - Please do not email the surgeon with the same name
- Office hours: Monday 12pm-2pm DH3078

## Introduction - You!

Machine Learning is a growing field and I feel it is important to learn about it.

- Machine Learning is a growing field and I feel it is important to learn about it.
- It sounds really cool but also job opportunities

- Machine Learning is a growing field and I feel it is important to learn about it.
- It sounds really cool but also job opportunities
- I find how brains work fascinating, and Neural Networks are somewhat like digital brains.

- Machine Learning is a growing field and I feel it is important to learn about it.
- It sounds really cool but also job opportunities
- I find how brains work fascinating, and Neural Networks are somewhat like digital brains.
- I don't understand anything

# Survey: Demographic

#### What year of study are you in?

#### 71 responses





# Survey: POSt

#### What is your POSt?

#### 71 responses



# Survey: Graduate Studies

#### Are you interested in graduate studies?

#### 71 responses



ıL

Consider taking CSC413 downtown instead if you've taken CSC411 and want to do graduate studies.

# Survey: CSC411

This course does not have CSC411 Machine Learning as a pre-requisite, so the two courses will overlap. Have you already taken CSC411 (or CSC311)?

71 responses



# Survey: Section

#### Which lecture session do you intend to attend?

#### 71 responses



ιU

Students who are actually registered in this section have seating priority.

# Survey: Project 3

#### Which machine learning task sounds more interesting?



#### 71 responses



- Determining whether a photo contains a shirt or a pair of pants.
- Determining whether a photo contains a left shoe or a right shoe.

- Very excited for this course! :)
- Excited for interesting machine learning projects.

- Very excited for this course! :)
- Excited for interesting machine learning projects.
- Could you let us know about the intended difficulty of the course?
- Make it harder

- Very excited for this course! :)
- Excited for interesting machine learning projects.
- Could you let us know about the intended difficulty of the course?
- Make it harder
- my linear algebra is very rusty

- Very excited for this course! :)
- Excited for interesting machine learning projects.
- Could you let us know about the intended difficulty of the course?
- Make it harder
- my linear algebra is very rusty
- Looking forward to build some awesome project to put on my resume and get a job in related field.
- Please introduce us material that would prepare us for a potential career in this field.

- Very excited for this course! :)
- Excited for interesting machine learning projects.
- Could you let us know about the intended difficulty of the course?
- Make it harder
- my linear algebra is very rusty
- Looking forward to build some awesome project to put on my resume and get a job in related field.
- Please introduce us material that would prepare us for a potential career in this field.
- I'm 6'1 but I haven't measured myself in a few years so I might be taller.

## What is the difference between...

- Artificial Intelligence
- Machine Learning
- Deep Learning

#### Discuss with your neighbour

- Artificial Intelligence: Create intelligent machines that work and act like humans. (CSC384)
- **Machine Learning**: Find an algorithm that automatically learns from example data. (CSC411/CSC311)

**Deep Learning**: Using deep neural networks to automatically learn from example data. (CSC321/CSC413)

## Relationship



# ARTIFICIAL INTELLIGENCE

Artificial Intelligence captures the imagination of the world.

#### MACHINE LEARNING

Machine learning starts to gain traction.



#### DEEP LEARNING

Deep learning catapults the industry.

Edward Shortliffe writes MYCIN, an Expert or Rule based System, to classify blood disease 1970s ImageNet Feeds Deep Learning 2009



|    | Turing Test Devised<br>1950 | ELIZA<br>1964 - 1966 |       |       | IBM Deep Blue defeats Grand<br>Master Garry Kasparov in chess<br>1996 |       | AlphaGo defeats Go<br>champion Lee Sedol<br>2016 |  |
|----|-----------------------------|----------------------|-------|-------|-----------------------------------------------------------------------|-------|--------------------------------------------------|--|
| 19 | 50s 1960s                   | 1970s                | 1980s | 1990s | 2000s                                                                 | 2010s |                                                  |  |

# Why machine learning?

For many problems, it is difficult to program the correct behavior by hand. Machine learning approach: program an algorithm to automatically learn from data.



Gary Chavez added a photo you might ... be in.

about a minute ago · 👪





#### CAT, DOG, DUCK



# Types of Machine Learning Problems

- Supervised Learning
  - Regression
  - Classification
- Unsupervised Learning
- Reinforcement Learning
- ► (...and more)

# Supervised Learning Task

**Supervised Learning**: learning a function that maps an input to an output *based on example input-output pairs*.

Examples:

- Age prediction given a headshot:
  - Input: headshot image
  - Output: person's height
- Sentiment classification given a tweet:
  - Input: tweet text
  - Output: whether the tweet is happy or sad

If we can collect *labeled* data, or data for which both (input, output) are known, then we can use supervised learning techniques.

## Supervised Learning Task

- Regression: when the output is a continuous value
  - e.g. height prediction
- Classification: when the output is a categorical value
  - e.g. sentiment classification

# Unsupervised Learning

**Unsupervised Learning**: learning the structure of some (unlabelled) data

Examples:

- clustering
- generating new images
- style transfer







# Reinforcement Learning

**Reinforcement Learning**: learning what actions to take to optimize long-term reward.

Example:

- playing a video game
- playing a game like go



# Deep Learning Caveats: Interpretability



Figure 1: from https://xkcd.com/1838/

# Deep Learning Caveats: Adversarial Examples



#### **"panda"** 57.7% confidence

**"gibbon"** 99.3% confidence

#### Deep Learning Caveats: Fairness

The U.S. military built an Al tool to find suitable combat personnel but had to shut it down because it was discriminating against women

News



#### Fairness in Machine Learning



# Course Coverage

- We will focus mostly on neural networks and deep learning
- Mostly supervised learning (2/3 of the course)
- ▶ Some unsupervised learning (1/3 of the course)
- A tiny bit of reinforcement learning (weather-permitting)

# Course Coverage

- ▶ We will focus mostly on neural networks and deep learning
- Mostly supervised learning (2/3 of the course)
- ▶ Some unsupervised learning (1/3 of the course)
- A tiny bit of reinforcement learning (weather-permitting)

**Shameless plug**: There will be a Machine Learning Reading Group this term! We'll either present supplemental material following CSC321 or following a Reinforcement Learning lecture series.

## Pre-requisites

Formal pre-requisites:

- Calculus
- Linear Algebra
- Probability

Recommended preparation:

- Multivariable calculus
- Programming experience

# Course Syllabus Scavenger Hunt

- 1. What textbook (if any) are we using for this course?
- 2. How much are the math homeworks worth and what time are they due?
- 3. How much are the coding assignments worth and what time are they due?
- 4. Can you do the homework / assignment in a group?
- 5. What is "Homework 0"?
- 6. What software will we use for this course?
- 7. What is the late policy for homeworks and assignments? How do grace tokens work?
- 8. When is the midterm going to be and how much is it worth?
- 9. What happens if there is a snow storm and class gets cancelled in weeks 1-6? In week 7?
- 10. What is plagarism and how can you avoid it?

#### Note Taker

Accessibility Services is looking for reliable volunteers to serve as note-takers this semester.

See http://www.utm.utoronto.ca/accessibility/volunteer-resources/volunteer-note-taker

Pre-requisite Quiz

# Supervised Learning

**Supervised Learning**: learning a function that maps an input to an output based on example input-output pairs

Given a set of labelled examples (the *training set*), determine/predict the labels of a set of unlabelled examples (the *test set*)

# Supervised Learning Examples

Age prediction given a headshot:

- Input: headshot image
- Output: person's age
- Sentiment classification given a tweet:
  - Input: tweet text
  - Output: whether the tweet is happy or sad
- Exam grade prediction:
  - Input: assignment grades
  - Output: exam grade

Q: Are these regression problems or classification problems?

We'll use the last example today.

# Supervised Learning Setup

Input: represented using the vector **x** 

- Example: **x** represents assignment grades (0-100)
- ► To start, let's assume that x is a scalar, and that we only have the cumulative assignment grade

Output: represented using the scalar t

- Example: t represents the grade on an exam (0-100)
- ▶ We'll use the scalar *y* to denote a *prediction* of the value of *t*

### Supervised Learning Idea

- We have some data  $(\mathbf{x}^{(1)}, t^{(1)}), (\mathbf{x}^{(2)}, t^{(2)}), \dots (\mathbf{x}^{(N)}, t^{(N)})$
- We want to be able to make prediction y (of an unseen t) for a new value of x
  - For example, predict the exam grade of a person who missed their exam
- ▶ How can we build a *model* to solve the prediction problem?

# Supervised Learning Models

In the first three weeks of class, we'll talk about two types of models:

- 1. Linear Models
  - ... for regression: predict a scalar-valued target (Week 1-2)
  - ... for binary classification: predict a binary label (Week 2-3)
  - ... for multiway classification: predict a discrete label (Week 3)
- 2. k-Nearest Neighbours
  - ... for both regression and classification (Week 3)

The k-Nearest Neighbour model is arguably a lot simpler, but to get you started on homework 1 we'll talk about linear regression first.

## Linear Regression

#### Supervised Learning Task: Exam Grade Prediction

(Definitely not real data from last term)



A **model** is a set of assumptions about the underlying nature of the data we wish to learn about. The **model**, or **architecture** defines the set of allowable **hypotheses**.

In linear regression, our model will look like this

$$y=\sum_j w_j x_j + b$$

Where y is a prediction for t, and the  $w_j$  and b are **parameters** of the model, to be determined based on the data.

## Linear Regression for Exam Grade Prediction

For the exam prediction problem, we only have a single feature, so we can simplify our model to:

$$y = wx + b$$

Our **hypothesis space** includes all functions of the form y = wx + b. Here are some examples:

y = 0.4x + 0.2
y = 0.9x + 0.2
y = 0.1x + 0.7
y = -x - 1
...

The variables w and b are called **weights** or **parameters** of our model. (Sometimes w and b are referred to as coefficients and intercept, respectively.)

#### Which hypothesis is better suited to the data?



## Hypothesis Space



#### We can visualize the hypothesis space or weight space:

Each *point* in the weight space represents a hypothesis.

# Quantifying the "badness" of a hypothesis

Idea:

► A good hypothesis should make good predictions about our labeled data (x<sup>(1)</sup>, t<sup>(1)</sup>), (x<sup>(2)</sup>, t<sup>(2)</sup>), ... (x<sup>(N)</sup>, t<sup>(N)</sup>)

# Quantifying the "badness" of a hypothesis

Idea:

► A good hypothesis should make good predictions about our labeled data (x<sup>(1)</sup>, t<sup>(1)</sup>), (x<sup>(2)</sup>, t<sup>(2)</sup>), ... (x<sup>(N)</sup>, t<sup>(N)</sup>)

• That is,  $y^{(i)} = wx^{(i)} + b$  should be "close to"  $t^{(i)}$ 

## Quantifying the "badness" of a hypothesis

Idea:

- ► A good hypothesis should make good predictions about our labeled data (x<sup>(1)</sup>, t<sup>(1)</sup>), (x<sup>(2)</sup>, t<sup>(2)</sup>), ... (x<sup>(N)</sup>, t<sup>(N)</sup>)
- That is,  $y^{(i)} = wx^{(i)} + b$  should be "close to"  $t^{(i)}$
- But how do we define the notion of "close to"?

We'll choose square vertical distance:

$$\mathcal{L}(y,t) = \frac{1}{2}(y-t)^2$$

This choice has some nice mathematical and statistical properties.

# Cost Function (Loss Function)

The "badness" of an entire hypothesis is the average badness across our labeled data.

$$\begin{split} \mathcal{E}(w,b) &= \frac{1}{N} \sum_{i} \mathcal{L}(y^{(i)},t^{(i)}) \\ &= \frac{1}{2N} \sum_{i} (y^{(i)} - t^{(i)})^2 \\ &= \frac{1}{2N} \sum_{i} ((wx^{(i)} + b) - t^{(i)})^2 \end{split}$$

This is called the **loss** of a particular hypothesis.

Since the loss depends on the choice of w and b, we call  $\mathcal{E}(w, b)$  the **loss function**.

Hypothesis y = wx + b

Parameters w, b

Loss Function 
$$\mathcal{E}(w,b) = \frac{1}{2N} \sum_{i} ((wx^{(i)} + b) - t^{(i)})^2$$

Goal

Find w, b that minimize L(w, b)

# Minimizing the Loss Function

**Task**: Find *w* and *b* that minimize the loss function:

$$\mathcal{E}(w,b) = \frac{1}{2N} \sum_{i} ((wx^{(i)} + b) - t^{(i)})^2$$

#### Potential Strategy: Grid search

Search through combinations of (w, b).



Why is this strategy poor?

### Potential Strategy: Grid search

Search through combinations of (w, b).



Why is this strategy poor?

Slow! Especially if **x** is high dimensional.

Potential Strategy: Direct Solution

Find a critical point by setting

$$\frac{\partial \mathcal{E}}{\partial w} = 0$$
$$\frac{\partial \mathcal{E}}{\partial b} = 0$$

Possible for our hypothesis space, and are covered in the notes ... and the pre-requisite quiz! See what we did there?

However, let's use a technique that can also be applied to more general models.

# Strategy: Gradient Descent

#### ... next class

# Summary

- We started with a **prediction problem**: predict *y* for a given *x*.
- We restricted ourselves to one type of **model** or **architecture**.
- We defined a continuous loss function to frame the problem as an optimization problem.
- We will solve the optimization problem using gradient descent.

This strategy of turning a prediction problem into an optimization problem is key in machine learning.

## What to do

Homework 0

Math pre-requisite problems

Homework 1

- Due next Thursday 9pm
- You have everything necessary to finish this homework!

Project 1

- Start reading the handout
- Find a partner