
CSC321 Winter 2017 Midterm Solutions

Afternoon section

1. [1pt] Carla tells you, “Overfitting is bad, so you want to make sure your model is
simple enough that the test error is no higher than the training error.” Is she right or
wrong? Justify your answer.

Note that there are good arguments for either side, so you will receive full credit as long
as you justify your answer well.

Solution: The intended answer is that Carla’s statement is false, because in order
to achieve the best generalization error, we need the model to be powerful enough to
explain the data. Making it so simple that there is no training/test gap could make
it too simplistic to explain the data. Rather, we want to tune the complexity by
minimizing the error on a validation set.

Another acceptable answer is that Carla is correct, if we are interested in interpreting
the parameters that we fit. E.g., statisticians often want to interpret linear regression
coefficients. In this case, we might want the model to be simple enough that it not
reflect any idisyncrasies in the training data.

Marking: Full marks for discussion of the tradeoff between underfitting and overfit-
ting, or of choosing the complexity to minimize validation error.

Mean: 0.45/1

2. [1pt] Suppose you are training a neural net using stochastic gradient descent (SGD),
and you compute the cost function on the entire training set after each update. TRUE
or FALSE: if you ever see the training cost increase after an SGD update, that means
your learning rate is too large. Justify your answer.

Solution: FALSE. SGD moves downhill on average, but individual updates can cer-
tainly increase the cost.

Marking: Half a point for the answer, half a point for the correct explanation.

Mean: 0.77/1

3. Suppose you are given the following two-dimensional dataset for a binary classification
task:

x1 x2 t
0 0 1
1 1 1
1 0 0
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You use a linear model with a hard threshold activation function, and a dummy di-
mension x0 so that w0 functions as a bias. You would like to find a weight vector in
the strictly feasible region, i.e. none of the training examples should lie on the decision
boundary.

(a) [1pt] Each of the training examples gives a constraint on w0, w1, and w2. Write
down all three constraints.

Solution:

w0 > 0

w0 + w1 + w2 > 0

w0 + w1 < 0

(b) [1pt] Find a set of weights which satisfies all the constraints. You do not need to
show your work or justify your answer. Hint: pick w0 first, then w1, then w2.

Solution: Since the scale is arbitrary, let’s start with w0 = 1. The third equation
tells us 1+w1 < 0, so let’s try w1 = −2. The second equation tells us 1−2+w2 > 0,
so let’s pick w2 = 2. So one solution is:

w0 = 1 w1 = −2 w2 = 2.

Mean: 1.79/2

4. [2pts] In Homework 5, we analyzed dropout for a linear regression model; the predic-
tions had the form

y =
∑
j

mjwjxj,

where the mj’s were i.i.d. Bernoulli random variables. Let’s modify the dropout algo-
rithm so that the mj’s take on continuous values, and they are i.i.d. Gaussian random
variables with mean 1 and variance σ2.

Under this model, determine the variance of the predictions, Var[y], as a function of
the xj’s and wj’s. Show your work. Hint: use the properties of variance.
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Solution:

Var(y) = Var

(∑
j

mjwjxj

)
=
∑
j

Var (mjwjxj) by independence

=
∑
j

w2
jx

2
j Var(mj) by the scalar multiplication rule

= σ2
∑
j

w2
jx

2
j

Mean: 1.42/2

5. [2pts] Briefly explain the difference between invariant and equivariant feature detec-
tors. Give an example of an equivariant operation.

Solution: A feature detector is invariant if it does not change (much) in response to
a particular transformation of the input. It is equivariant if it transforms the same
way as the input does. Convolution is an example of an equivariant operation which
we’ve covered in this course; it is equivariant with respect to translation. There are
lots more examples of equivariant operations, and any are acceptable as long as you
explain why they’re equivariant.

Marking: 1 point for the explanation of invariance and 1 point for the explanation of
equivariance. We’re not counting the example of equivariance since we couldn’t think
of a reasonable way to mark it.

Mean: 0.96/2

6. Recall that in the domain of binary classification, the logistic activation function com-
bined with cross-entropy loss does not suffer from saturated units. Now let’s suppose
we don’t like making overly confident predictions, so we transform the predictions y to
lie in the interval [0.1, 0.9]. In other words, we take

y = 0.8σ(z) + 0.1,

where σ denotes the logistic function. We still use cross-entropy loss.

(a) [1pt] For a positive training example, sketch the cross-entropy loss as a function of
z. Your sketch doesn’t need to be precise, but it should make clear the asymptotic
behavior as z → ±∞. (You should label any asymptote lines.)
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Solution: The sketch should show a roughly sigmoidal function with horizontal
asymptotes at L = − log 0.1 as z → −∞ and L = − log 0.9 as z →∞.

(b) [1pt] Based on your answer to Part (a), will gradient descent on this model suffer
from saturation when the predictions are very wrong? Why or why not?

Solution: Yes it will suffer from saturation, because the loss is flat for very
negative z, which means ∂L/∂z ≈ 0.

Mean: 1.02/2

7. Suppose we somehow know that the weights for a two-dimensional regression problem
should lie on the unit circle. We can parameterize the weights in terms of the angle θ,
i.e. let (w1, w2) = (cos θ, sin θ). The model and loss function are as follows:

w1 = cos θ

w2 = sin θ

y = w1x1 + w2x2

L =
1

2
(y − t)2

(a) [1pt] Draw the computation graph relating θ, w1, w2, y, and L.

(b) [2pts] Determine the backprop update rules which let you compute the derivative
dL/dθ.

Your equations should refer to previously computed values (e.g. your formula for
z should be a function of y). You do not need to show your work, but it may help
you get partial credit. The first two steps have been filled in for you.

Solution:

L = 1

y = L · (y − t)
w1 = y x1

w2 = y x2

θ = −w1 sin θ + w2 cos θ

Marking: One point for w1 and w2, and the other point for θ.
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Mean: 2.80/3

8. [2pts] Suppose you are given a two-dimensional linear regression problem (with no bias
parameter), using the following dataset:

x1 x2 t
83.1 -82.4 3.3
83.2 -82.8 1.5
83.5 -82.1 2.0

...
...

...

Circle the contour plot which best represents the cost function for this regression prob-
lem. Justify your answer.

Solution: Circle the first one. The reason is that any choice of weights such that
w1−w2 takes a given value will result in fairly similar predictions, so they will achieve
fairly similar loss.

Marking: One point for the correct answer, and one point for a correct explanation.

Mean: 0.93/2

Night Section

1. Consider a convolution layer. The input consists of 6 feature maps of size 20×20. The
output consists of 8 feature maps, and the filters are of size 5× 5. The convolution is
done with a stride of 2 and zero padding, so the output feature maps are of size 10×10.

For both parts, you can leave your expression as a product of integers; you do not need
to actually compute the product. You do not need to show your work, but doing so can
help you receive partial credit.
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(a) [1pt] Determine the number of weights in this convolution layer.

Solution: There’s one filter for each pair of an input and output feature map, and
the filters are each 5×5. Therefore, the number of weights is 6×8×5×5 = 1200.

(b) [1pt] Now suppose we made this a fully connected layer, but where the number
of input and output units are kept the same as in the network described above.
Determine the number of weights in this layer.

Solution: There are 20× 20× 6 units in the input layer and 10× 10× 8 units in
the output layer, so the number of weights is 20×20×6×10×10×8 = 1,920,000.

Mean: 1.13/2

2. [2pts] Recall that the learning rate is an example of a hyperparameter which must be
tuned. Alice wants to tune the learning rate by doing a grid search over values and
choosing the one which achieves the lowest training error. Bob tells her it’s important
to tune all hyperparameters on a separate validation set. Who is right? Justify your
answer.

Note that there are good arguments for either side, so you will receive full credit as long
as you justify your answer well.

Solution 1: Alice is right. It is OK to tune the learning rate on the training set,
because the learning rate relates to optimization rather than generalization.

Solution 2: Bob is right. The learning rate can affect generalization in various ways.
E.g., a lower learning rate can have a similar effect to early stopping, since the optimizer
will have made less progress. Also, SGD has a regularization effect (see the Lecture
9 slides on stochastic regularization), and this effect might be stronger with a larger
learning rate.

Marking: One point for pointing out that measuring generalization is the reason for
using a separate validation set. Full credit for an answer like one of the above.

Mean: 0.74/2

3. [2pts] Your job is to design a multilayer perceptron which receives three binary-valued
(i.e. 0 or 1) inputs x1, x2, x3, and outputs 1 if exactly two of the inputs are 1, and
outputs 0 otherwise. All of the units use a hard threshold activation function:

z =

{
1 if z ≥ 0
0 if z < 0
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Specify weights and biases which correctly implement this function. You do not need
to explain your solution. Hint: one of the hidden units should activate if 2 or more
inputs are on, and the other should activate if all of the inputs are on.

Solution:

W(1) =

(
1 1 1
1 1 1

)
b(1) =

(
−1.5
−2.5

)
w(2) =

(
1
−1

)
b(2) = −0.5

Marking: One point for the first layer, and one point for the second layer.

Mean: 1.67/2

4. [3pts] You want to train the following model using gradient descent. Here, the input
x and target t are both scalar-valued.

z = w0 + w1x+ w2x
2

y = 1 + ez

L =
1

2
(log y − log t)2.

Determine the backprop rules which will let you compute the loss derivative ∂L/∂w2.

Your equations should refer to previously computed values (e.g. your formula for z
should be a function of y). You do not need to show your work, but it may help you
get partial credit. The dummy step has been filled in for you.

Solution:

L = 1

y = L 1

y
(log y − log t)

z = y ez

w2 = z x2
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Marking: One point for each of the three equations.

Mean: 2.70/3

5. [2pts] Suppose we are training a linear regression model using gradient descent with
momentum. The update rules are as follows:

pj ← µpj −
α

N

N∑
i=1

x
(i)
j (y(i) − t(i))

wj ← wj + pj

Now suppose that, as usual, the inputs are stored as an N ×D matrix X, where N is
the number of data points and D is the input dimension. The targets and predictions
are represented as N-dimensional vectors t and y, respectively. The weights and mo-
mentum vector are represented as D-dimensional vectors w and p, respectively. Write
the vectorized form of these update rules, i.e. mathematical expressions which could be
translated into NumPy without requiring for-loops.

You may assume y has already been computed. You do not need to show your work,
though it may help you receive partial credit.

Solution:

p← µp− α

N
X>(y − t)

w← w + p

Marking: 1.5 points for p and half a point for w.

Mean: 1.83/2

6. [1pt] Write the formula for the logistic function σ(z). You do not need to justify your
answer or explain anything.

Solution:

σ(z) =
1

1 + e−z

Mean: 0.72/1

7. [1pt] Recall that the perceptron algorithm cycles through the training examples, applying
the following rule:
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z(i) ← wTx(i)

If z(i)t(i) ≤ 0,

w← w + t(i)x(i)

(Recall that the targets take values in {−1, 1}.) Suppose we make the inequality strict
in the conditional, i.e. we update the weights only if z(i)t(i) < 0. What would go wrong?
You may assume the weights are initialized to 0. Hint: what happens on the first
training example?

Solution: For the first training example, z evaluates to 0, so the strict version of
the inequality will not be triggered, and then the weights won’t be updated. Then
the weights will still be zero for the second example, and so on, so the weights never
actually get updated.

Mean: 0.89/1

8. [2pts] Suppose the word representations r1 and r2 are both unit vectors. Show that the
Euclidean distance ‖r1 − r2‖ is a monotonically decreasing function of the dot product
r>1 r2. Hint: start by expanding out the formula for squared Euclidean distance.

Let’s expand out the formula for squared Euclidean distance:

‖r1 − r2‖2 = (r1 − r2)
>(r1 − r2)

= r>1 r1 − 2r>1 r2 + r>2 r2

= 2− 2r>1 r2

Hence,

‖r1 − r2‖ =
√

2− 2r>1 r2,

which is a monotonically decreasing function of r>1 r2.

Mean: 1.28/2
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