
CSC321 Winter 2015 — Intro to Neural Networks
Solutions for afternoon midterm

Unless otherwise specified, half the marks for each question are for the
answer, and half are for an explanation which demonstrates understanding of
the relevant concepts.

1. (2 marks) Briefly explain what is meant by overfitting. Is it true that if
you choose the hyperparameters (e.g. number of hidden units) well, then
there will be no overfitting? Why or why not? (Either YES or NO is
acceptable, as long as you justify your answer.)

Solution. A learning algorithm overfits when it fits idiosyncrasies in
the training set which aren’t present in the test set, causing the training
performance to be better than the test performance. Possible answers
to the second part:

(a) No. In trying to achieve the best predictive performance, there’s
a tradeoff between overfitting and underfitting (as well as other
factors), and the optimal hyperparameter settings may involve some
of each.

(b) Yes. If your goal is to interpret the learned model, you want to
choose a model simple enough that it has only minimal overfitting,
so that you know it’s only capturing real structure in the data.

Marking. We gave one mark for a good explanation of overfitting, and
one mark for an answer to the second part which shows understanding
of the relevant concepts.

2. (1 mark) Recall our study of the weight space geometry of linear regres-
sion. For this question, assume there is no bias parameter. We saw
that the set of weight vectors w which predict a given target exactly,
i.e. wTx(i) = t(i), is a hyperplane in weight space. If all the hyperplanes
for a given training set intersect at a single point w?, then must w? be
an optimal solution to the linear regression problem? Why or why not?

Solution. Yes. If w? is contained in every hyperplane, then it fits every
training case perfectly. It achieves a loss of 0, which is the smallest
possible loss.

Marking. By far the most common mistake was to get linear regres-
sion confused with classification. There is no “feasible region” for linear

1



regression, since that concept applies to constraint satisfaction (or con-
strained optimization) problems; regression is unconstrained.

Some people said it might not be an optimal solution since it wouldn’t
generalize. This isn’t technically correct (“optimal solution” refers to a
point which minimizes the cost), but we gave it full marks, as long as
the answer showed understanding.

3. (1 mark) The following diagram shows the level curves in weight space of
a cost function C which we are trying to minimize. The current weight
vector is marked by an ×. Sketch the gradient descent update. (We
haven’t given you enough information to determine the magnitude, so
we just want you to get the direction correct.)

Solution:

Marking. Half a mark for the direction being orthogonal to the level
set, and half a point for it being on the correct side of the level set.

4. (2 marks) In the first week of class, we discussed how linear regression
could be made more powerful using a basis function expansion, i.e. a
function φ which maps each data point x to a feature vector φ(x). We
later saw how this is analogous to fitting a feed-forward neural net with
one hidden layer, where one set of weights is held fixed. (Such a network
is shown in the following figure.) Which set of weights is held fixed?
Briefly explain what the hidden activations and both sets of weights cor-
respond to.

2



x1 x2

w2

W1

h1 h2 h3

y

Solution. The weights and hidden units correspond to:

(a) W1: parameters used in computing the feature vectors

(b) h: the feature vector φ(x)

(c) w2: the regression weights

The weights W1 are held fixed, since they are used to compute the (fixed)
basis function representation.

Marking. There were 4 individual questions, each worth half a mark.

5. (3 marks) Consider the network shown in the figure. All of the hidden
units use the linear rectification nonlinearity hi = max(zi, 0). We are
trying to minimize a cost function C which depends only on the acti-
vation of the output unit y. The unit h1 (marked with a ?) receives an
input of -1 on a particular training case, so its output is 0. Based only on
this information, which of the following weight derivatives are guaran-
teed to be 0 for this training case? Write YES or NO for each. Justify
your answers informally. Hint: don’t work through the backprop compu-
tations. Instead think about what the partial derivatives really mean.

∂C/∂w1: YES ∂C/∂w2: YES ∂C/∂w3: NO

3



y

h1 h2

h3 h4

x1 x2

w1

w2

w3

*

Note: Each of w1,
w2, and w3 refers to
the weight on a sin-
gle connection, not
the whole layer.

Solutions:

(a) ∂C/∂w1: YES, because h1 is zero, and therefore changing w1 doesn’t
affect the input to unit y. Therefore it doesn’t affect the output of
the network, or the cost.

(b) ∂C/∂w2: YES. Because the input z1 is negative, ∂h1/∂z1 = 0, so
changing w2 by a small amount doesn’t change h1. Therefore it has
no effect on the output of the network.

(c) ∂C/∂w3: NO. Changing w3 by a small amount can change h3, which
can change h2, which can change y, which can change C.

Marking. We gave half a mark for each of the three answers and half a
mark for having a reasonable justification for each.

4



6. (2 marks) Let’s compare the following two models. Model A is the neural
probabilistic language model from Assignment 1. Model B is the same as
Model A, with the following modification: in between the hidden layer (of
size 128) and the output layer (of size 250), we insert a layer consisting
of 16 linear units. The top layers of both models are shown in the figure.
Describe one advantage of Model A and one advantage of Model B.

128 logistic units

250 softmax units

128 logistic units

250 softmax units

16 linear units

output layer

hidden layer

Model A Model B

Solution. In general, adding a linear hidden layer does not make a
network any more powerful, but instead limits the functions that it can
represent. The advantage of Model A is that it can learn any function
that Model B can learn, plus some additional functions. Another solution
we gave full credit for is that it has fewer layers, and therefore less of
a problem with exploding/vanishing gradients. Possible advantages of
Model B include:

(a) It has fewer parameters (128×16+16×250 as opposed to 128×250),
so it is less likely to overfit.

(b) It is computationally cheaper, since a matrix-vector product of size
16× 128, followed by one of size 250× 16, requires fewer arithmetic
operations than one of size 250 × 128.

(c) The added linear layer is essentially another word embedding layer.
Therefore, after we train the model, we get an embedding of the
target words which we can analyze and visualize.

Marking. One mark for each part. One common mistake was to say
Model B was more complex/powerful than Model A. Some people said

5



an advantage of A is that it’s simpler to implement (since you have fewer
things to derive); we didn’t give credit for this since the implementation
difficulty isn’t very different. We also didn’t give credit for saying A has
fewer units, unless there was an argument for why more units is worse.
(In some models like conv nets, reducing the number of units helps since
the activations take up a lot of memory; we would have given credit for
this answer even though it’s not really an issue for this model.)

7. (1 mark) Briefly explain one method for dealing with the problem of
exploding and/or vanishing gradients in recurrent nets. Why does this
method help?

Solution. There are a lot of possible answers, including:

(a) Clipping the gradients to be no larger than a certain norm prevents
the optimization algorithm from taking extremely large steps.

(b) In tasks that require memorization, reversing the input sequence
makes it so some of the dependencies are short-term. The RNN
can learn these first, before it learns to model the longer-distance
ones.

(c) The Long-term Short Term Memory architecture makes it easy to
maintain the state of the hidden units over a long time range. This
drastically simplifies the form of the dependency between distant
time steps, making the updates more stable.

(d) Hessian-free optimization corrects for the curvature of the loss func-
tion in computing the updates. Since exploding gradients also tend
to involve directions of high curvature, H-F will drastically reduce
the size of the step in those directions.

(e) You can carefully initialize the weights of the network so that the
largest eigenvalue of the Jacobian at each time step is approximately
1. This prevents the gradients from exploding at the start of opti-
mization, yet still preserves information over many time steps.

Marking. Some people mentioned generic techniques for optimization
which don’t address RNNs specifically (e.g. momentum, using a smaller
learning rate). We didn’t give credit for these.

6



8. (1 mark) We saw that we can apply a recurrent net to machine trans-
lation by feeding it an English sentence, and then having it generate the
French sentence the same way an RNN language model generates text.
This setup is shown in the figure. Would it work to use the neural prob-
abilistic language model from Assignment 1 in the same way? Why or
why not?

Solution. This would not work, since the neural language model is
memoryless, which means it only uses the previous few inputs in making
its predictions. Once it starts producing the French sentence, it will
ignore all but the last few words of the English sentence.

Marking. The important idea here is memorylessness. We also gave
half a mark for arguing that the language model only captures syntactic
information, whereas you also need semantic information for translation.
Other answers which would be just as much a problem for an RNN as
for the Assignment 1 model received no credit. A common mistake was
to argue that it wouldn’t work because the sentences don’t necessarily
align one-to-one; people probably misread the problem and thought we
were using the naive strategy of predicting the first French word from
the first English word, etc.

9. (1 mark) Design a finite state machine which determines if a given se-
quence of binary digits contains at least 2 zeros. Specify which state is
the initial state and which state(s) correspond to an answer of YES. You
do not need to justify your answer.

Solution. The following FSM counts the number of zeros seen so far,
up to a maximum of 2. The initial state is 0, and the state 2 corresponds
to YES.

0 1 2
0 0

1
1

0, 1

7



Marking. Most people got full credit on this one. A lot of the wrong
answers may have resulted from misreading the question, e.g. looking for
two consecutive zeros rather than two zeros total.

10. (1 mark) Suppose we compute the convolution I∗w, where I is a grayscale
image (white pixels correspond to values of 1 and black pixels correspond
to 0) and

w =

−1 −2 −1
0 0 0
1 2 1


is a convolution kernel. For what parts of the image will the output be
farthest from zero? In the image shown, will the output at the location
marked by × take a positive or a negative value?

x
this

location

Solution, and marking. Each part was worth half a point, and no
justification was required. We compute the convolution using the flip-
and-filter interpretation: we flip w horizontally and vertically, and then
compute the dot product for every window of the image.

This question was badly worded, and people interpreted the first part in
a lot of different ways. Fortunately, all of the interpretations tested the
relevant concepts equally well, so this wasn’t a problem for marking.

(a) We intended to ask: in general, what parts of an image will have
output values farthest from zero? Answer: horizontal edges.

(b) If you interpret it as applying to this particular image, the answer
is the very top and bottom points on the circle. We also accepted
things like “top and bottom parts.”

8



(c) We were vague about whether the convolution operator used only
windows within the input, or whether we padded. We gave full
marks for saying it’s the top and bottom edges of the image, as-
suming the image is padded with zeros.

At the location shown, it will take a positive value, since the negative
part of the filter overlaps with the dark region, and the positive part
overlaps with the light region. (This is true because w is flipped as part
of computing the convolution.)

9


