
A Linear Time Algorithm to Compute a Maximum

Weighted Independent Set on Cocomparability Graphs

Ekkehard Köhlera, Lalla Mouatadidb

aBrandenburg University of Technology, 03044 Cottbus, Germany
bUniversity of Toronto, Toronto ON M5S 2J7, Canada

Abstract

The maximum weight independent set (WMIS) problem is a well-known NP-
hard problem. It is a generalization of the maximum cardinality independent
set problem where all the vertices have identical weights. There is a O(n2)
time algorithm to compute a WMIS for cocomparability graphs by computing
a maximum weight clique on the corresponding complement of the graph [1].
We present the first O(m + n) time algorithm to compute a WMIS directly
on the given cocomparability graph, where m and n are the number of edges
and vertices of the graph respectively. As a corollary, we get the minimum
weight vertex cover of a cocomparability graph in linear time as well.

Keywords: maximum weight independent set, cocomparability graphs,
posets, minimum weight vertex cover

1. Introduction

Given a graph G(V,E), an independent set (also called stable set) I ⊆ V ,
is a subset of pairwise non-adjacent vertices. For G(V,E,w) being a graph
together with a weight function w : V → R, the weighted maximum inde-
pendent set (WMIS) problem asks for an independent set I ⊆ V such that∑

v∈I w(v) is maximum. This problem is a generalization of the maximum
cardinality independent set problem where all vertices have equal weights.
The WMIS problem has been widely studied as it naturally arises in differ-
ent applications, such as scheduling [2], combinatorial auctions [3], molecular

Email addresses: ekkehard.koehler@b-tu.de (Ekkehard Köhler),
lalla@cs.toronto.edu (Lalla Mouatadid)

Preprint submitted to Elsevier

biology [4] to name a few. The problem is NP-hard for arbitrary graphs; we
restrict ourselves to the class of cocomparability graphs and present a linear
time algorithm for this case.

Let G(V,E) be a graph where n = |V | and m = |E|, and let N(v) (resp.
N [v]) denote the open (resp. closed) neighbourhood of vertex v; N(v) =
{u ∈ V |uv ∈ E} and N [v] = N(v) ∪ {v}. A graph G(V,E) is a cocompa-
rability graph if its complement is a comparability graph. A graph G(V,E)
is a comparability graph if E admits an acyclic transitive orientation. That
is, if uv, vw ∈ E, and they are oriented u → v, and v → w then uw has to
be contained in E and must be oriented u → w. Cocomparability graphs
are a subfamily of perfect graphs and have been well studied. Many prob-
lems on this graph class are solved by computing the complement of the
given graph, and translating the problem into its complement problem on
comparability graphs. This transformation necessitates Ω(n2) computation,
whereas for some problems direct solutions in O(n+m) are possible. Find-
ing a WMIS in a cocomparability graph, for example, is equivalent to finding
a maximum weighted clique in its complement. There exists a linear time
dynamic programming algorithm to compute the maximum weight clique on
a comparability graph, given a transitive orientation of the edges [1]. This
implies an O(n2) time algorithm to compute a WMIS on a cocomparability
graph.

The idea to solve problems directly on cocomparability graphs instead
of going over to the complement graph has been around for a while and a
number of problems have been solved in this way, such as domination [5] and
the minimum feedback vertex set problem [6]. Recently, there have been new
approaches for solving problems directly on the given cocomparability graph.
In [7] for instance, Mertzios and Corneil presented the first polynomial time
algorithm to solve the longest path problem on cocomparability graphs, and
in [8] Corneil et al. gave the first near linear time certifying algorithm to
compute a minimum path cover, and thus a Hamilton path (if one exists),
directly on cocomparability graphs. Motivated by this idea, we present the
first linear time algorithm to compute a WMIS directly on a cocomparability
graph. The unweighted case has been known to take O(m+ n) time [9]. As
a corollary to our result, we also get the minimum weight vertex cover of a
cocomparability graph in linear time.

Cocomparability graphs have a vertex ordering characterization, known
as a cocomparability order σ, or an umbrella-free order; more precisely, an
ordering σ = v1 ≺σ v2 ≺σ · · · ≺σ vn is a cocomparability order iff for any

2

triple u ≺σ v ≺σ w with uw ∈ E, either uv ∈ E or vw ∈ E or both [5].
In other words, σ does not contain an umbrella, which is a triple of vertices
u ≺σ v ≺σ w with uw ∈ E but uv, vw /∈ E. In [10], McConnell and Spinrad
presented an algorithm to compute such an ordering in O(m+ n) time. We
use their algorithm, denoted as σ ← ccorder(G) to compute such an ordering.

This paper is organized as follows. In Section 2 we present an overview
of the algorithm, followed by its formal description and in Section 3, we
prove the correctness of the algorithm, present implementation details and
the complexity analysis.

2. The Algorithm

Let G(V,E,w) be a weighted cocomparability graph and let X ⊆ V be the
subset of vertices with non-positive weight, i.e., X = {v : w(v) ≤ 0}. Any
vertex v ∈ X that belongs to an independent set S will not increase the total
weight of S. Therefore if X 6= ∅, we can restrict ourselves to G[V \X], which
is also a cocomparability graph that can easily be computed in O(m + n)
time.

Suppose G(V,E,w) is a cocomparability graph with positive weight func-
tion w : V → R>0. Using the algorithm in [10], we compute a cocompara-
bility order σ of V in O(m + n) time where σ = v1 ≺σ v2 ≺σ · · · ≺σ vn. We
then construct a new permutation τ of the vertices as follows: we process
one vertex at a time according to the order imposed by σ from left to right.
To each vi we associate an updated weight w̃(vi) and an [independent] set
Svi (containing vi) of total weight w̃(vi). The vertices from v1 to vi are then
reordered such that the new ordering is non-decreasing with respect to their
updated weights w̃; τi denotes the resulting permutation on the processed
vertices v1, . . . , vi. In other words, for vertices vk, vj (1 ≤ k, j ≤ i, k 6= j),

if vk ≺τi vj then w̃(vk) ≤ w̃(vj). (1)

Initially τ1 is just {v1}, w̃(v1) = w(v1), and Sv1 = {v1}. For every vertex
vi (i > 1), we scan through τi−1 from right to left, looking for the rightmost
non-neighbour of vi. Let u denote such a vertex (if it exists); w̃(vi) and Svi
are then set to

w̃(vi) = w(vi) + w̃(u)

Svi = {vi} ∪ Su.

3

If no such vertex u exists, then

w̃(vi) = w(vi)

Svi = {vi}.

τi is the permutation of {v1, . . . , vi} created by inserting vi into τi−1 such
that (1) holds and thus preserving the non-decreasing order of the updated
weights. Since the weights are strictly positive, it is easy to see that w̃(vi) =
w(vi) + w̃(u) implies w̃(vi) > w̃(u) and thus also implies u ≺τi vi.

Notice that if there exists a vertex x in τi−1 such that w̃(x) = w̃(vi),
then vi is inserted to the right of vertex x in τi−1. We say that a vertex vi
has been processed as soon as it is inserted into τi−1 and thus τi is created.
When all vertices are processed, we have determined τn. We return Sz as a
maximum weight independent set of G and w̃(z) as its corresponding total
weight, where z is the rightmost vertex in τn.

We now present the formal description of the algorithm; recall that ccorder(G)
is the procedure presented in [10] to compute a cocomparability order in
O(m+ n) time.

Algorithm 1: CCWMIS

Input: G = (V,E,w), w : V → R>0

Output: A maximum weight independent set together with its
weight

1 σ ← ccorder(G(V,E)) ; // σ = (v1, v2, . . . , vn)

2 for i← 1 to n do
3 w̃(vi)← w(vi);
4 Svi ← {vi};
5 τ1 ← (v1); // Constructing τi
6 for i← 2 to n do
7 Choose u to be rightmost non-neighbour of vi with respect to

τi−1;
8 if u exists then
9 w̃(vi)← w(vi) + w̃(u);

10 Svi ← {vi} ∪ Su;
11 τi ← insert(vi, τi−1);
12 // Insert vi into τi−1 such that τi stays ordered with respect to w̃(·)

13 z ← the rightmost vertex in τn;
14 return Sz and w̃(z);

4

We illustrate the algorithm using a cocomparability graph and a corre-
sponding cocomparability ordering given in Figure 1. Table 1 shows how τi is
created by the algorithm. Recall that the vertices are processed in σ’s order
and vertex vi is inserted into τi−1 according to its updated weight.

v1 v2

v3v4

v5v6

v7

w(v) : 1 0.5 1-ε 3ε 4 2-ε 2
σ : v1 v2 v3 v4 v5 v6 v7

Figure 1: A cocomparability graph with a valid cocomparability ordering; positive weights
are given below the vertices, with 0 < ε < 1

6 .

vi u Svi w̃(vi) τi

v1 - {v1} 1 v1
v2 - {v2} 0.5 v2, v1
v3 v1 {v3, v1} 2− ε v2, v1, v3
v4 - {v4} 3ε v4, v2, v1, v3
v5 v1 {v5, v1} 5 v4, v2, v1, v3, v5
v6 v3 {v6, v3, v1} 4− 2ε v4, v2, v1, v3, v6, v5
v7 v6 {v7, v6, v3, v1} 6− 2ε v4, v2, v1, v3, v6, v5, v7

Table 1: Step by step construction of the ordering τn as computed by Algorithm 1. At
iteration i, vi is being processed to create τi; u denotes the rightmost non-neighbour of the
vertex being processed; “-” means no such vertex u exists. By Algorithm 1, z = v7 and
thus a maximum weight independent set of the graph in Figure 1 is Sz = {v7, v6, v3, v1}
with weight w̃(z) = 6− 2ε.

3. Correctness, Complexity Analysis, and Robustness

Recall that Svi is the set associated with vi recursively constructed by finding
u, the rightmost non-neighbour of vi in τi−1; in other words Svi denotes

5

a set of vertices including vi whose weights sum up to w̃(vi). Therefore
w(Svi) = w̃(vi). For all i, Svi is initialized to {vi} in step 4 of Algorithm 1
and is updated accordingly in step 10.

Lemma 1. For all i, on entry to step 11 of Algorithm 1, the set Svi is an
independent set.

Proof. The proof is by induction on i. For i = 1 the set Sv1 = {v1} as
initialized in step 4 is an independent set.

Suppose the lemma holds for all j ∈ {1, . . . , i− 1} and look at vertex vi.
Obviously, if there is no u as defined in step 7, then vi is universal to the
vertices in τi−1 and thus we have Svi = {vi} as initialized in step 4. Consider
now the case that there is such a vertex u and assume for contradiction
that i is the first iteration where the set Svi computed in step 10 is not an
independent set. At iteration i, vi is being processed; let vj<i(= u) be the
rightmost non-neighbour of vi in τi−1 which means vj was processed before
vi and thus:

vj ≺σ vi
vjvi /∈ E
Svi = {vi} ∪ Svj (2)

Svj is an independent set by the induction hypothesis. (3)

Given (2) and (3), if Svi is not an independent set, there must exist a vertex
a ∈ Svj where avi ∈ E, and by (3), avj /∈ E. Furthermore, we know that
a ≺σ vj, since for creating τj vertex vj was inserted into τj−1 to the right of
its rightmost non-neighbour in τj−1. Thus the ordering of the triple (a, vj, vi)
implied by the cocomparability ordering σ is a ≺σ vj ≺σ vi. However, the
edge avi flying over vj contradicts σ being a cocomparability order; therefore
on entry to step 11 of Algorithm 1, Svi is an independent set.

Lemma 2. For all i, on entry to step 11 of Algorithm 1, in the graph
G[v1, . . . , vi] the set Svi is of maximum weight among the independent sets
containing vi.

Proof. The proof is again by induction on i. For i = 1, the maximum weight
independent set in G[v1] is just Sv1 = {v1} with w̃(v1) = w(v1).

Suppose now that the claim holds for all j ∈ {1, . . . , i − 1} and let vi
be the vertex considered. Further, let u be the rightmost vertex that is

6

non-adjacent to vi in τi−1. If no such vertex u exists, then vi is universal
to all vertices in τi−1, and Svi = {vi} as initialized in step 4 is the only
independent set in G[v1, . . . , vi] that contains vi, and thus has maximum
weight among all independent sets containing vi. Suppose now that such a
vertex u exists. Since τi−1 contains a non-decreasing order of the updated
weights w̃(v) for v ∈ {v1, . . . , vi−1}, we thus know that Su is an independent
set containing u with the maximum weight such that vi can be added to Su
and by Lemma 1 maintains independency. If there were another independent
set Sa for a ∈ {v1, . . . , vi−1} such that w̃(a) > w̃(u) and a is non-adjacent to
vi, then u ≺τi−1

a thereby contradicting Algorithm 1 choosing u. Therefore
Svi satisfies the lemma.

Lemma 3. For 1 ≤ i ≤ n, let zi be the rightmost vertex of τi, then Szi is a
maximum weight independent set in G[v1, . . . , vi].

Proof. The proof is again by induction on i. For i = 1 the lemma is obvious.
Suppose the claim holds for all j ∈ {1, . . . , i − 1}. Consider zi−1, the

rightmost vertex of τi−1, and let w̃(zi−1) be its corresponding updated weight.
Because insertion to τi−1 is done rightmost in non-decreasing order:

w̃(zi−1) ≥ w̃(a) , ∀a ∈ {v1, . . . , vi−1}.

By the induction hypothesis, Szi−1
is a maximum weight independent set in

G[v1, . . . , vi−1]. When processing vi, we scan τi−1 from right to left to insert
vi and maintain the non-decreasing order of τi−1. Either w̃(vi) ≥ w̃(zi−1),
in which case, vi is the rightmost vertex of τi, and hence zi = vi and Svi is
a maximum weight independent set in G[v1, . . . , vi], or w̃(vi) < w̃(zi−1) and
so zi = zi−1 and Szi = Szi−1

remains a maximum weight independent set in
G[v1, . . . , vi].

Theorem 1. Algorithm 1 computes a maximum weight independent set of
G when G is a cocomparability graph.

Proof. This follows directly from Lemma 3.

To show that Algorithm 1 has complexity O(m+n) we have to explain some
implementation details. We assume we are given an adjacency list represen-
tation of G(V,E). Using the algorithm in [10], we compute a cocomparability
ordering σ of the vertices of G, i.e., step 1 of Algorithm 1 is computed in
O(m + n) time. The ordering σ = {v1, v2, . . . , vn} is implemented using a
doubly linked list.

7

In the remainder of the analysis, we denote by u the rightmost non-
neighbour in τi−1 of vertex vi, if such a vertex u exists. In order to determine
u, we create an array A of size n initialized to A[k] = 0, ∀ 1 ≤ k ≤ n. At
iteration i we update A such that A[j] = i if and only if vjvi ∈ E; i.e. we
keep the ith row of the adjacency matrix of G, where A[j] = i stands for
vivj ∈ E and A[j] < i for vivj /∈ E. Now for determining u it suffices to scan
τi−1 from right to left looking for the first vertex vj ∈ τi−1 such that A[j] 6= i;
this vertex is then chosen to be u and we create a pointer p for vertex vi
that points to this rightmost non-neighbour u (this pointer is necessary to
output the maximum independent set at the end). Once the weight of vi
is updated to w̃(vi) = w̃(u) + w(vi), we scan τi−1 from right to left once
again to insert vi into τi−1. To this end, we update the doubly linked lists
pointers appropriately to maintain the increasing order of the weights in the
new ordering. Since the pointer p keeps track of vertex u, we thus only need
to scan the linked list of τi−1 up to pointer p.

Now we can study the complexity of this algorithm. For every vi, we first
scan its adjacency list to update A, then we scan τi−1 from right to left to
determine u, and finally scan τi−1 a second time to insert vi and maintain the
non-decreasing order of the updated weights. Setting the array A requires
scanning vi’s adjacency list in any order and for every vh in vi’s list we set
A[h] = i. This operation takes O(dvi) steps where dvi denotes the degree of
vi.

Scanning τi−1 from right to left to determine u requires at most O(dvi)
checks to see whether A[j] < i for vj ∈ τi−1. If such a vertex u exists then
in constant time we update w̃(vi); similarly, in constant time we create the
above mentioned pointer p that points to u. Otherwise, if u does not exist, vi
must be universal to all vertices in τi−1, and again it will cost at most O(dvi)
checks to conclude that no such u exists. Consequently, step 7 of Algorithm 1
takes O(dvi) time per vertex.

Finally we need to insert vi into τi−1 to create τi. Since the weights of all
vertices are strictly positive, we have w̃(vi) = w(vi) + w̃(u) > w̃(u) and thus
u ≺τi vi. Since it takes at mostO(dvi) steps to determine u and w̃(u) < w̃(vi),
it takes at most O(dvi) comparisons to insert vi into τi−1 when scanning τi−1
from right to left. Thus step 11 of Algorithm 1 takes at most O(dvi) steps
per vertex as well.

Step 13 can easily be determined in constant time with the use of a right-
hand end pointer of τi−1. Thus all operations take at most O(dvi) time per
vertex; consequently when all vertices are processed, the for-loop in steps 6

8

to 12 of Algorithm 1 takes at most O(m+n) time in total. As already men-
tioned, step 1 is done in linear time [10], and clearly the for-loop in steps 2
to 5 takes linear too. Creating Sz in line 14 also takes linear time as it suf-
fices to start at τn’s righthand end pointer to find z and then unravel the p
pointers starting with z’s p pointer. We therefore conclude with the following
theorem.

Theorem 2. If G(V, E, w) is a weighted cocomparability graph, then the
maximum weight independent set of G can be computed in O(m+ n) time.

Robustness. To make the algorithm robust, it suffices to scan the neighbour-
hood of the vertex being processed to check if one of its neighbours appears
earlier in the sub-solution.

More precisely, let vi be the vertex being processed, and let vj be the right
most non-neighbour of vi in τi−1. The algorithm would create Si as Sj∪{vi}.
Before creating Si, we scan N(vi) to see if for some x ∈ Sj, xvi ∈ E. This
operation takes O(dvi). If such an x exists, the algorithm breaks and returns
x, vj, vi as an umbrella. As vi is the left most such vertex in σ, it follows that
xvj, vjvi /∈ E, xvi ∈ E. Since vertices are processed in the σ ordering, this
umbrella occurs in σ, thus contradicting σ being a cocomparability order.

Suppose the algorithm returns a solution S even though the graph is not
a cocomparability graph. Then it can be shown that S is still a maximum
weight independent set. For this let A = {a1, a2, . . . , ak} be an optimal
solution of G such that a1 ≺σ a2 ≺σ . . . ≺σ ak. Note that Lemma 2 still holds
for G; for otherwise let vi be the first vertex to break Lemma 2. Suppose
Si = Sj∪{vi} is not a maximum weight independent set that vi belongs to in
G[v1, . . . , vi]: Either (i) there exists a set Sh found by the algorithm for some
vertex vh such that Sh ∪ {vi} has a bigger weight than Si, or (ii) there exists
a set of vertices B = {b1, b2, . . . , bt} that was not created by the algorithm
such that B ⊆ {v1, . . . , vi−1} and B ∪ {vi} has a bigger weight than Si.

(i) Suppose such an Sh exists; then vj ≺τi−1
vh and Sh would have been

chosen by the algorithm.
(ii) Suppose that the set B exists as defined above and let b1 ≺σ b2 ≺σ

. . . ≺σ bt be the ordering of the elements of B as processed by the algorithm,
i.e., as ordered by σ. By the choice of vi, bt satisfies Lemma 2, and thus bt
belongs to a set, call it S`, where bt = v` for some ` ∈ {1, . . . , n}, such that

9

w̃(v`) ≥
∑t

s=1w(bs). By the choice of Sj, we know that w̃(vj) ≥ w̃(v`) ≥∑t
s=1w(bs), thus Si = Sj ∪ {vi} still satisfies Lemma 2.
Therefore when processing the elements of A as ordered by σ, there ex-

ists a set Sf (where vf = ak) that is a maximum weight independent set in
G[v1, . . . , vf = ak] containing ak. Consequently Sf is an optimal solution, and
since the algorithm does not break, Sf remains an optimal solution through-
out all iterations and is returned by the algorithm. The same argument holds
if there exists more than one optimal solution. Therefore the algorithm is
robust as it either returns an umbrella (showing that the given ordering was
not a cocomparability order) or an optimal solution.

Minimum Vertex Cover. It is a well known fact that for a maximum inde-
pendent set S of a graph G, the set V \S is a minimum vertex cover of G. If
we chose S to be the independent set returned by Algorithm 1, we therefore
get the following corollary.

Corollary 1. If G(V, E, w) is a weighted cocomparability graph, with weight
function w : V → R>0, a minimum weight vertex cover of G can be computed
in O(m+ n) time.

Acknowledgements

The second author wishes to thank University of Toronto, Department of
Computer Science, and the Natural Science and Engineering Research Coun-
cil of Canada for their financial support, through grants number RGPIN
7631-12 and RGPIN 7671-11. Furthermore, the authors wish to thank their
anonymous referees for suggesting certification which lead us to the robust-
ness of the algorithm.

References

[1] M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, An-
nals of Discrete Mathematics, Vol 57, North-Holland Publishing Co.,
Amsterdam, The Netherlands, 2004.

[2] E. M. Arkin, E. B. Silverberg, Scheduling jobs with fixed start and end
times, Discrete Appl. Math. 18 (1) (1987) 1–8.

[3] S. De Vries, R. V. Vohra, Combinatorial auctions: A survey, INFORMS
Journal on computing 15 (3) (2003) 284–309.

10

[4] V. Bafna, B. Narayanan, R. Ravi, Nonoverlapping local alignments
(weighted independent sets of axis-parallel rectangles), Discrete Appl.
Math. 71 (1) (1996) 41–53.

[5] D. Kratsch, L. Stewart, Domination on cocomparability graphs, SIAM
J. Disc. Math. 6 (3) (1993) 400–417.

[6] Y. Daniel Liang, M.-S. Chang, Minimum feedback vertex sets in cocom-
parability graphs and convex bipartite graphs, Acta Informatica 34 (5)
(1997) 337–346.

[7] G. B. Mertzios, D. G. Corneil, A simple polynomial algorithm for the
longest path problem on cocomparability graphs, SIAM J. Disc. Math.
26 (3) (2012) 940–963.

[8] D. G. Corneil, B. Dalton, M. Habib, LDFS-based certifying algorithm
for the minimum path cover problem on cocomparability graphs, SIAM
J. Comput. 42 (3) (2013) 792–807.

[9] E. Dahlhaus, J. Gustedt, R. M. McConnell, Partially complemented
representations of digraphs., Discrete Mathematics & Theoretical Com-
puter Science 5 (1) (2002) 147–168.

[10] R. M. McConnell, J. P. Spinrad, Modular decomposition and transitive
orientation, Discrete Math. 201 (1) (1999) 189–241.

11

	Introduction
	The Algorithm
	Correctness, Complexity Analysis, and Robustness

