Efficient Algorithms on Cocomparability Graphs Via Vertex Ordering Characterizations

Lalla Mouatadid

University of Toronto, Department of Computer Science

lalla@cs.toronto.edu

Joint work with Ekkehard Köhler and Michel Habib

Cocomparability Graphs

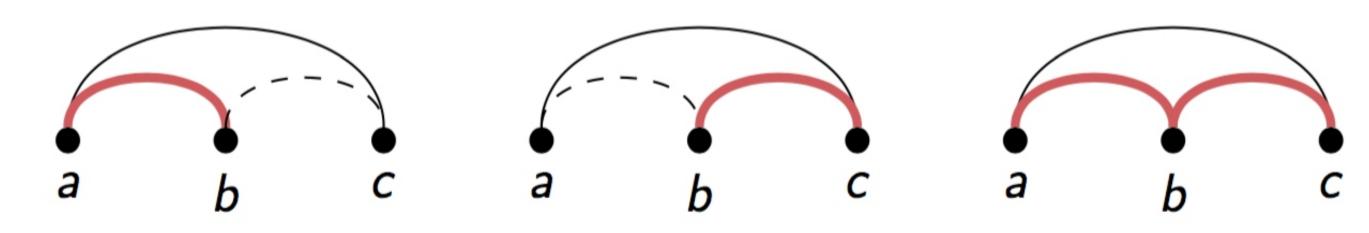
Induced Matching

- The complements of comparability graphs.
- Many-to-one mapping from posets to cocomparability graphs.
- Cocomparability graphs are a superclass to: • Co-graphs, trapezoid, permutation, interval graphs
- An ordering σ of V is a *cocomparability (cocomp) ordering* if for every triple $\mathbf{a} < \mathbf{b} < \mathbf{c}$ in σ :

• Induced matching: A matching where every pair of edges is at distance at least 2 in **G**.

• Induced Matching is NP-complete on bipartite graphs, even if the graphs have degree 3, or are planar.

• Given an ordering σ of V(G), construct an ordering on the vertices of **L(G)**, the line graph of **G**, such that for every pair



• G is a cocomp graph iff it admits a cocomp ordering.

The Algorithms

Max Weighted Independent Set (MWIS)

Input: A cocomparability graph **G=(V, E)**:

• Compute a cocomparability ordering σ . • Scan σ left to right: compute an ordering τ , where vertices are inserted in τ in increasing order of their (updated) weight. • Scan τ right to left to greedily collect a maximum weight independent set.

Max Weighted Induced Matching (MWIM)

 $e_i = (a,b), e_i = (u,v)$:

Rule (•):
$$e_i \prec_{\bullet} e_j \iff a \preceq_{\sigma} u$$
 and $b \preceq_{\sigma} v$
Rule (*): $e_i \prec_{\star} e_j \iff \begin{cases} a \prec_{\sigma} u & \text{if } a \neq u \\ a = u \text{ and } b \prec_{\sigma} v & \text{o.w.} \end{cases}$

The Results:

Let **S** = {interval, split, threshold, cocomparability}

• Given a vertex ordering of **G** in **S**, rules • and **★** compute vertex orderings of L²(G).

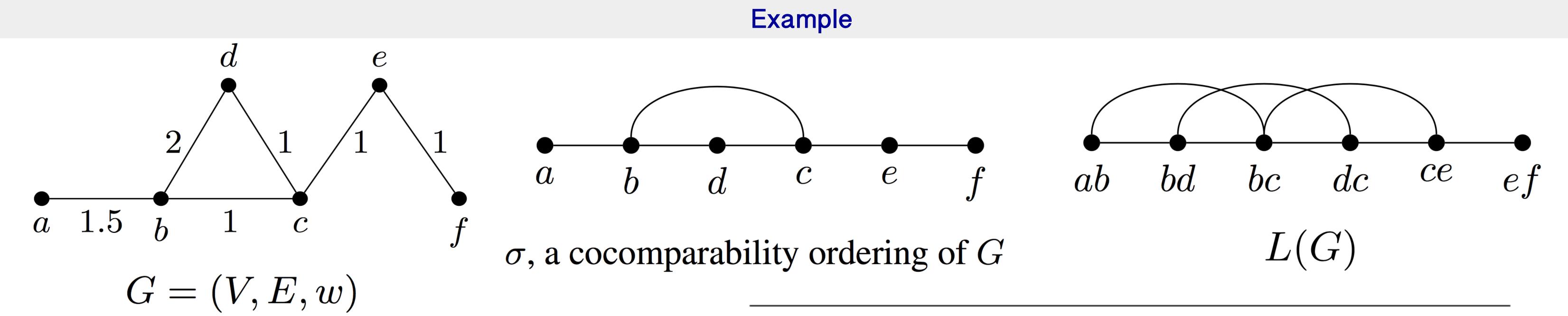
- Every graph class in **S** is closed under **L**²(•).
- Maximum weighted independent set (MWIS) can be computed in O(m+n) time on **cocomparability** graphs.

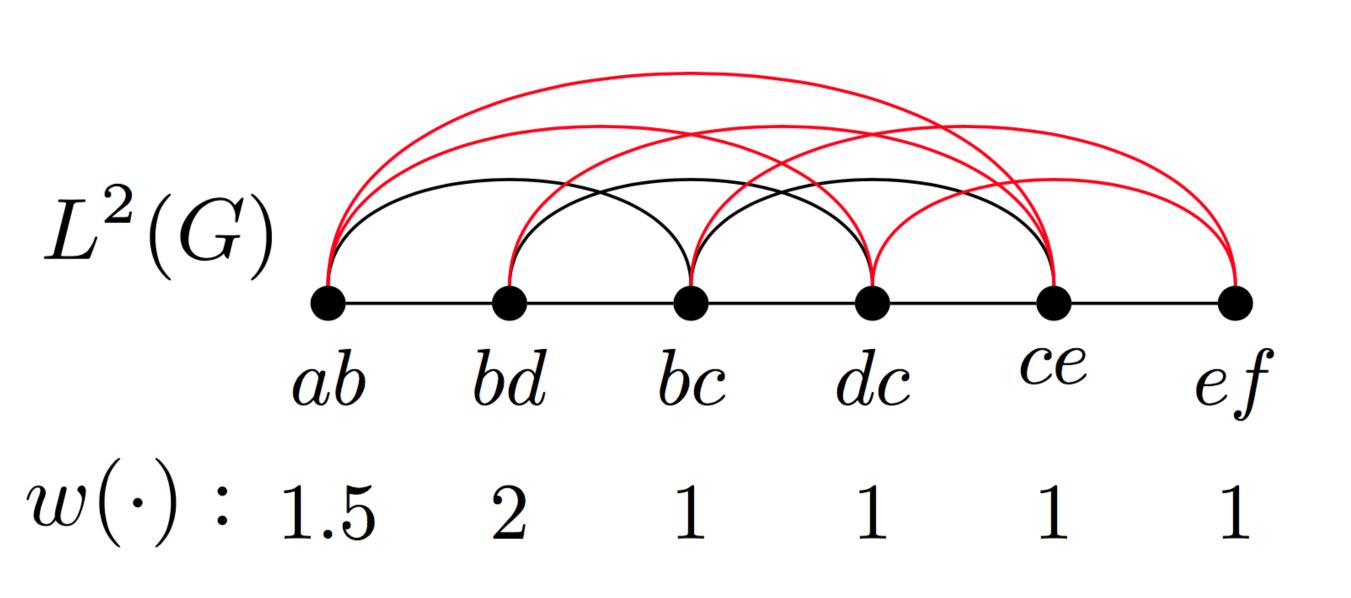
Input: Given a cocomparability graph **G=(V, E)**:

• Compute a cocomparability ordering σ . • Using either Rule • or Rule \star , compute τ . • Use the MWIS algorithm on τ to compute a maximum weight induced matching on **G**.

• Maximum weighted induced matching (MWIM) can be computed in O(mn) time on **cocomparability** graphs.

• Both the MWIS and MWIM algorithms are robust.





e_i	\boldsymbol{u}	S_{e_i}	$w(S_{e_i})$	$ au_{i}$
$e_1 = ab$	_	$\{e_1\}$	1.5	e_1
$e_2 = bd$	_	$\{e_2\}$	2	e_1, e_2
$e_3 = bc$	-	$\{e_3\}$	1	e_{3}, e_{1}, e_{2}
$e_4 = cd$	-	$\{e_4\}$	1	$e_{3}, e_{4}, e_{1}, e_{2}$
$e_5 = ce$	-	$\{e_5\}$	1	$e_{3}, e_{4}, e_{5}, e_{1}, e_{2}$
$e_6 = ef$	bd	$\{e_2, e_6\}$	3	$e_3, e_4, e_5, e_1, e_2, e_6$

Future Work

- Colouring Algorithm via VOCs.
- Certifying algorithms.
- Stepping outside perfection: AT-free graphs are closed under $L^2(\bullet)$ as well.

Köhler & Mouatadid, Linear Time MWIS on Cocomparability Graphs. IPL Brandstädt & Hoàng, Maximum induced matchings for chordal graphs in linear time. Algorithmica Cameron, Induced matchings in intersection graphs. Discrete Math Habib & Mouatadid: Efficient MIM Algorithms via VOCs. Submitted

References