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Abstract. Modular Decomposition focuses on repeatedly identifying
a module M (a collection of vertices that shares exactly the same
neighbourhood outside of M) and collapsing it into a single vertex. This
notion of exactitude of neighbourhood is very strict, especially when
dealing with real world graphs.

We study new ways to relax this exactitude condition. However, general-
izing modular decomposition is far from obvious. Most of the previous
proposals lose algebraic properties of modules and thus most of the nice
algorithmic consequences.

We introduce the notion of an (a, 3)-module, a relaxation that main-
tains some of the algebraic structure. It leads to a new combinatorial
decomposition with interesting properties. Among the main results in
this work, we show that minimal («, 8)-modules can be computed in
polynomial time, and we generalize series and parallel operation between
graphs. This leads to (a, 8)-cographs which have interesting properties.
We study how can be generalized Gallai’s Theorem corresponding to the
case for & = 8 = 0, but unfortunately we give evidence that computing
such a decomposition tree can be difficult.

1 Introduction

First introduced for undirected graphs by Gallai in [20] to analyze the structure
of comparability graphs, modular decomposition has been used and defined in
many areas of discrete mathematics, including 2-structures, automata, partial
orders, set systems, hypergraphs, clutters, matroids, boolean and submodular
functions [IAT5[I822]. For a survey on modular decomposition, see [32] and for
its algorithmic aspects [24]. Since they have been rediscovered in many fields,
modules appear under various names in the literature, they have been called
intervals, externally related sets, autonomous sets, partitive sets, homogeneous
sets, and clans. In most of the above examples the family of modules of a given
graph yields a kind of partitive family [68/9], and therefore leads to a unique
modular decomposition tree that can be computed efficiently.

* This work is supported by the ANR-France Project Hosigra (ANR-17-CE40-0022).
Preliminary results of this work were presented in [23].



Roughly speaking, elements of a module M behave exactly the same with
respect to elements outside of M. Thus a module can be contracted to a single ele-
ment without losing neighbourhood and connectivity information. This technique
has been used to solve many optimization problems and has led to a number
of elegant graph algorithms, see for instance [31]. Other direct applications of
modular decomposition appear in areas such as computational protein-protein
interaction networks and graph drawing [T938]. Recently, new applications have
appeared in the study of large networks [4435], where a module is considered as
a regularity or a community that has to be detected and understood.

Although it is well known that almost all graphs have no non-trivial mod-
ules [33], some graphs that arise from real data seem to have many non-trivial
modules [37]. How can we explain such a phenomenon? It could be that the
context in which this real data is generated has a clustering structure; but it
could also be because we reach some known regularities as predicted by Sze-
merédi’s Regularity Lemma [45]. In fact for every € > 0, Szemerédi’s lemma
asserts the existence of an ng such that all undirected graphs with more than ng
vertices admit an e-regular partition of their vertices. Such a partition is a kind
of an approrimate modular decomposition, and linear time algorithms for exact
modular decomposition are known [24].

Our results. In this paper we introduce and study a new generalization of modular
decomposition by relaxing the strict neighbourhood condition of modules with
a tolerance of some errors (missing or extra edges). In particular, we define an
(c, B)-module to be a set M whose elements behave exactly the same with respect
to elements outside of M, except that each “outside” element can have either
at most « missing edges or at most 3 extra edges connecting it to M. In other
words, an («, f)-module M can be turned into a module by adding at most «
edges, or deleting at most 3 edges, at each element outside M. In particular, we
recover the standard modular decomposition when a@ = § = 0.

This new combinatorial decomposition is not only theoretically interesting
but also can lead to practical applications. We first prove that every graph admits
an («, f)-modular decomposition tree which is a kind of generalization of Gallai’s
modular decomposition Theorem. But by no means such a tree is unique and we
also give evidence that finding such a tree could be NP-hard. On the algorithmic
side we propose a polynomial algorithm to compute a covering of the vertex set by
minimal (e, 3)-modules with a bounded overlap, in O(m - n®*#+1) time. For the
bipartite case, when we restrict (c, 8)-modules on one side of the bipartition, we
completely compute all these (o, 8)-modules. In particular, we give an algorithm
that computes a covering of the vertices of a bipartite graph in O(n**#(n +m))
time, using maximal («, 8)-modules. This can be of great help for community
detection in bipartite graphs.

Organization of the paper. Section [2] covers the necessary background on stan-
dard modular decomposition, introduces («, §)-modules and illustrates various
applications of («a, #)-modular decomposition. Sections [3| covers structural prop-
erties of (a, §)-modules and the NP-hardness results. Section [4] contains all the
algorithmic results, in particular the computation of minimal («, 8)-modules as



well as («, 8)-primality testing. Section [5| covers the complete determination of
(a, B)-modules that lay one side of a bipartite graph. We conclude in Section |§|
with an alternate relaxation of modular decomposition.

2 Modular Decomposition: A Primer

Let G = (V(G), E(G)) be a graph on |[V(G)| = n vertices and |E(G)| = m
edges. For two adjacent vertices u,v € V(G), uv denotes the edge in E(G) with
endpoints u and v. All the graphs considered here are simple (no loops, no
multiple edges), finite and undirected. The complement of a graph G = (V, E) is
the graph G = (V(G), E(G)) where uv € E(G) if and only uv ¢ E(G). We often
refer to the sets of vertices and edges of G as V and E respectively, if G is clear
from the context.

For a set of vertices X C V| we denote by G(X) the induced subgraph of G
generated by X. The set N(v) = {u : uv € E} is the neighbourhood of v and the
set N(v) = {u:u # v and uv ¢ E} the non-neighbourhood of v. This notation
can also be extended to sets of vertices: for a set X C V', we let

NX)={yeV\X:3z e X and zy € E(G)},

and
NX)={yeV\X:VzeX, vy ¢ E(G)}.

Note here that N(X) is not the union of the sets N(x) for all x € X, but the set
of vertices outside from X that have a neighbour in X.

Two vertices u and v are called false twins if N(u) = N(v), and true twins if
N(u)U{u} = N(v) U{v}.

A Moore family on a set X is a collection of subsets of X that contains X
itself and is closed under intersection.

Definition 1. A module of a graph G = (V, E) is a set of vertices M C 'V that
satisfies
Ve,y € M, N(z)\ M = N(y) \ M.

In other words, V' \ M is partitioned into two parts A, B such that there is a
complete bipartite subgraph between M and A, and no edges between M and B.
Observe that we have A = N(M), and B = N(M).

A single vertex {v: v € V'} is always a module, and so are the empty module
and the set V. Such modules are called trivial modules. A graph with only trivial
modules is called a prime graph. A module is mazimal if it is not contained in
any other non-trivial module.

A modular decomposition tree of a graph G is a tree T(G) that captures the
decomposition of G into modules. The leaves of T'(G) represent the vertices of
G, the internal nodes of T'(G) capture operations on modules, and are labelled
parallel, series, or prime. A parallel node captures the disjoint union of its
children, whereas a series node captures the full connection of its children. A
prime node is one whose children can only be decomposed into trivial modules.



Fig. 1. A graph G (left) and its modular decomposition tree (right). Maximal modules
are red, series and parallel nodes are labelled in the tree as S and P respectively.

Parallel and series nodes are often referred to as complete nodes. Fig. [1]illustrates
a graph with its modular decomposition tree.

By the Modular Decomposition Theorem [9I20], every graph admits a unique
modular decomposition tree. Other combinatorial objects also admit unique
decomposition trees, partitive families in particular.

Two sets A and B overlap if ANB # 0, A\ B # 0, and B\ A # (). In a family
of subsets F of a ground set V', a set S € F is strong if S does not overlap with
any other set in F. We denote by A the symmetric difference of two sets:

AAB={a:a€ A\B}U{b:be B\ A}.
Definition 2 ([9]). A family of subsets F over a ground set V is partitive if

(i) 0, V, and all singletons {x : © € V'} belong to F, and
(i) VA,B € F, if ANB # 0 then AUB € F, AnNBe F, A\B € F, and
AAB € F.

Partitive families play a fundamental role in combinatorial decomposition [89].
Every partitive family admits a unique decomposition tree with only complete
and prime nodes. The strong elements of F form a tree ordered by the inclusion
relation [9].

A complement reducible graph is a graph whose decomposition tree has no
prime nodes, that is, the graph is totally decomposable into parallel and series
nodes only. Complement reducible graphs are also known as cographs, and are
exactly the Py-free graphs [43]. A modular decomposition tree of a cograph is
often referred to as a cotree. Cographs have been widely studied, and many
typical N P-hard problems (colouring, independent set, etc.) become tractable
on cographs [11].

2.1 Generalizations of Modular Decomposition / Motivation

Finding a non-trivial tractable generalization of modules is not an easy task.
Indeed, when trying to do so, we are faced with two main difficulties.



The first one is to obtain a pseudo-generalization. Suppose for example that
we change the definition of a module into: Va,y € M, N*(z) \ M = N*(y) \ M,
where N*(x) can mean something like “vertices at distance at most k” or “vertices
joined by an odd path”, etc. In many of these scenarios, it turns out that the
problem transforms itself into the computation of precisely the modules of some
auxiliary graph built from the original one. Some work in this direction avoiding
this drawback can be found in [7].

The second difficulty is IV P-hardness. Consider the notion of roles defined in
sociology, where two vertices play the same role in a social network if they have
the same set of colours in their neighbourhood. In this scenario, if a colouring
of the vertices is given, then one can compute these roles in polynomial time.
Otherwise, the problem is indeed a colouring problem which is N P-hard to
compute [17].

In this work, we consider two variations of the notion of modules, both of
which trying to avoid these two difficulties. Some of these new modules are
polynomial to compute, and we believe they are worth studying further. We focus
on the most promising relaxation, namely what we call (¢, 8)-modules.

Our initial idea was to allow some “errors” by saying that at most k edges
(for some fixed integer k) could be missing in the complete bipartite subgraph
between M and N (M), denoted (M, N(M)), and, symmetrically, that at most
k extra edges can exist between M and N(M). But by doing so, we lose most
of the nice algebraic properties of modules which yield an underlying partitive
family. Furthermore, most modular decomposition algorithms are based on these
algebraic properties [9].

A second natural idea is to relax the condition on the complete bipartite
subgraph (M, N(M)), for example by asking for a graph that does not contain
any 2K, (two disjoint edges). Unfortunately, as shown in [40], to test whether a
given graph admits such a decomposition is N P-complete. In fact, in the same
work, the authors studied a generalized join decomposition solving a question
raised in [28] about perfection. A completely different type of generalization
was proposed and studied by Ehrenfeucht and McConnell in [I3] where they
introduce the notion of a k-structure that unifies the prime decomposition on
2-structures as well as k-ary relations; now while this new notion of k-structures is
a generalization of these two concepts, it is not itself a relaxation of the exactitude
constraint of modular decomposition.

For all the above reasons and obstacles, we focus on (a, 8)-modules which
maintain some algebraic properties and thus allow to obtain nice algorithms.

Intuitively, we want the reader to think of an (a, 8)-module as a subset of
vertices that almost looks the same from the outside. So, if M is an («, 5)-module,
then for all z,y € V\M, N(z)NM and N(y)NM are almost the same if both z, y
have at least S neighbours in M each, or both z, y have at least @ non-neighbours
in M each. In other words, either x,y see nearly all of M or z,y do not see M
with the exception of at most a4+ 8 “errors”, where an error is either a missing
edge or an extra edge. We use the integers @ and 8 to bound the number of
errors in the adjacency, according to their type.



Formally, we define an (¢, 8)-module as follows:

Definition 3. An («, 3)-module of a graph G = (V, E) is a set of vertices
M CV that satisfies

Ve e V\M, IMNN(x)| > |M|—«aor | MNN(z)| <B.

In other words, M can be turned into a (standard) module by adding at most
« edges or deleting at most 8 edges at each vertex outside M.

This notion of missing or extra edges, that we call (a, 8)-errors, finds appli-
cation naturally in various fields, from data compression and exact encodings to
approximation algorithms.

Indeed, modular decomposition is often presented as an efficient way to encode
a graph. This encoding property is preserved under the («, 8)-modules. We want
to be able to contract a non-trivial («, 5)-module (to be precisely defined later,
see Definition [7)) into a single vertex while keeping almost the entirety of the
original graph, and then apply induction on the decomposition.

To this end, for a graph G = (V, E), let M be a non-trivial («, 5)-module with
X being the neighbourhood of M minus some « edges missing, and Y the non-
neighbourhood of M with some extra § edges (we call these the a-neighbourhood
and -non-neighbourhood of M which we define formally in the following section).
The point is, if we want an exact encoding of GG, we can contract M into a unique
vertex m adjacent to every vertex in X, and non-adjacent to any vertex in Y. We
then keep track of the subgraph G(M) and the errors that potentially arose from
the missing edges in (M, X) (i.e., the missing « edges) and the extra edges in
(M,Y) (i.e., the extra § edges). This new encoding has at least | X|- (|M|—a—1)
edges less than the original encoding in the worst case and |X| - (|]M| — 1) when
M is a module.

3 Structural Properties of (a, 3)-Modules

In order to maintain some of the algebraic properties of modules, and avoid
running into the N P-complete scenarios previously mentioned, the («, 8) gener-
alization of modules seems to be a good compromise.

We emphasize a few points concerning («, )-modules. Note first that we
tolerate o or 8 “error-edges” per vertex outside the module, depending on how
this vertex is connected to the (o, §)-module, and not a+ 3 error-edges per module.
Secondly, observe that when o = 8 = 0, we recover the standard definition of
modules (see Definition , which can be rephrased as follows.

Definition 4. A module of a graph G = (V, E) is a set of vertices M C V' that
satisfies

VeeV\M, MNN(z)=0 or MNN(z)= M.

Of course we only consider cases for which max(«,3) < |V| — 1. Fig.
illustrates an example of a graph with a (1, 1)-module.
Let us begin with some simple properties that directly follow from Definition [3]
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Fig. 2. The set {d, e, f} is not a standard module, nor a (1,0) or a (0, 1)-module, only
a (1,1)-module.

Proposition 1. If M is an («, 8)-module of G, then the following holds.

1. M is an (¢, 8')-module of G, for every o < o' and 5 < .

2. M is a (B,a)-module of G.

3. M is an (a, B)-module of every induced subgraph G(N) of G with M C N.
4. Every («a, 8)-module of G(M) is an («, B)-module of G.

Proof.

1. Taking o’ and 8’ such that o < o/ and 8 < 3’ can only relax the module
conditions.

2. Moving to the complement just interchanges the roles of o and § in the
definition.

3. If the («, 8)-module conditions are satisfied for all vertices in V(G) \ M, then
they are satisfied for all vertices in V/(G) \ N for M C N. Therefore M is an
(ar, B)-module of the induced subgraph G(N).

4. Let N be an (a, §)-module of the subgraph G(M). So every vertex in M \ N
satisfies the («, 8)-module conditions. Since M is supposed to be an («, §)-
module, every vertex in V(G) \ M satisfies the («, 8)-module conditions for
M and therefore also for N C M.

O

Definition 5. Let G = (V, E) be a graph and A CV be a set of vertices. The
a-neighbourhood and B-non-neighbourhood of A are, respectively,

Na(4)={z ¢ A:|N() Al > |A| - a}, and
Ns(4)={z ¢ A:|N(x)n A <8},

Moreover, if & € No(A) (resp. x € Ng(A)), we say that x is an a-neighbour of
A (resp. a B-non-neighbour of A) and that x is a-adjacent (resp. B-non-
adjacent) to every vertex of A.

Definition 6. Let G = (V, E) be a graph and A C V be a set of vertices. A
verter z ¢ A is an (a, 3)-splitter for A if

B <|N(z)NA| <|A] - a.
We denote by Sq,g(A) the set of (o, 5)-splitters of A.



Hence, a set A is an («, §)-module if and only if S, g(A) = 0. As an immediate
consequence we have the following easy facts.

Lemma 1. For every graph G = (V, E) and every set of vertices A C V, the
following holds.

No(A)UNg(A)U S, 5(4) =V \ A.

If |A| > a+ B+ 1, then No(A) N Ng(A) = 0.

If|[A| < a+ B+1, then So 5(4) = 0.

If |A| = a+ B+ 1, then N,y(A) and Ng(A) partition V \ A.

If A is an (o, B)-module of G and |A] > a + B+ 1, then No(A) and Ng(A)
partition V' \ A.

SN

Proof.

This directly follows from the definitions of these sets.

If ¥ € Ny(A), then |[N(z) N A] > |A] —a > B+ 1 and thus o ¢ Ng(A).

If x € So5(A), then [N(2) N A] < |A| —a < 8+ 1, a contradiction.

We have N,(A) N Ng(A) =0 by Item 2, and S, 5(A) = 0 by Item 3. The
result then follows from Item 1.

5. This follows from Items 1 and 2. ad

Ll e

Lemma 2. For every graph G = (V, E) and every set of vertices A C V, if
Al < a+ B +1, then A is an («, B)-module of G.

Proof. Using Lemma A admits no («, 8)-splitter and is thus an («, 8)-module
of G. a

It thus seems that the subsets of size a + 8 + 1 are crucial to the study of
this new decomposition. In fact, if A is such a set, then for every vertex z ¢ A,
we have either z € N, (A) or z € Ng(A), but not both (Lemma .

Lemma 3. If a vertex s is an («, 8)-splitter for a set A, then s is also an
(«, B)-splitter for every set B 2 A with s ¢ B.

Proof. Let s be an («, B)-splitter of A. We thus have § < [N(s) N A| < |[A] — a.
Now, if A C B and s ¢ B, then we have 8 < |[N(s) N 4| <|N(s)N B|. Similarly,
A\ N(s) C B\ N(s). Therefore | B\ N(s)| > « which implies |N(s)NB| < |B|—«a.

Therefore, we get 8 < [N(s) N B| < |B| — « and s is an («, 8)-splitter for
B. O

Theorem 1. For every graph G = (V, E), the family of (a, §)-modules of G
satisfies the following:

(1) The set V is an (o, §)-module of G, and every set A CV with |A| < a+p+1
is an (a, B)-module of G.



(ii) If A and B are two («, B)-modules of G, then AN B is an («, 8)-module
of G. Moreover, the (a, )-splitters of A\ B and B\ A can only belong to
AN B.

Proof.

(i) This directly follows from Definition [3{and Lemma

(ii) Notice first that if both A and B are trivial («, 8)-modules with less than
a+ B +1 vertices each then so are ANB, A\ B and B\ A. It could be the case
that A=V and B # V is also a trivial (a, §)-module. But then AN B = B
is still a trivial (o, 8)-module, and («, 3)-splitters for V'\ B can only come
from B. So property (ii) is satisfied for all (a, §)-modules satisfying condition
(i).
Suppose now that the cardinality of both A and B is at least a+ 3+ 2 and at
most |V|—1. If ANB has an («, 8)-splitter outside of AUB then, by Lemma
A and B would also have an («, 8)-splitter, a contradiction. If AN B has an
(c, B)-splitter in B\ A (resp. in A\ B) then, by Lemma [3] again A (resp. B)
would have an (a, §)-splitter. Therefore, AN B is an («a, §)-module of G.
Let us now consider A\ B. If A\ B has an (a, §)-splitter in B\ A then, by
Lemma [3] A would have a («, 8)-splitter as well. The same conclusion arises
for splitters outside of AU B. Hence, the only possible («, 8)-splitters for
A\ B and, similarly, for B\ A, are in AN B.
Finally, we consider the case where one module is trivial and the other non-
trivial. Suppose, without loss of generality, that A is a trivial («, §)-module
and B is a non-trivial one.
If A=V, then AN B = B is an («a, 8)-module, and so is B \ a = ) — which
has no (a, f§)-splitters —. Furthermore, every («, 3)-splitter of A\ B =V \ B
must come from B = AN B.
Otherwise, if [A| < a+ 8+ 1, then [ANB| < a+ §+ 1 is also a trivial
(ar, B)-module, and so must A\ B be. In this case, if B\ A has an (¢, 8)-
splitter in V'\ B, then this vertex must also be an («, 8)-splitter for B, thus
contradicting our assumption that B is an («, #)-module. This implies that
any («, B)-splitter of B\ A must be in B\ A4, thereby completing the proof. O

Since the family of («, 8)-modules is closed under intersection, it yields a
discrete convexity.

Given a set A, we can compute the minimal (under inclusion) (e, 8)-module
M (A) that contains A, with strictly more than o+ 8+ 1 elements, thus computing
a modular closure via («, §)-splitters. Furthermore, the dual cases of (1,0)-
modules and (0, 1)-modules seem very interesting.

Definition 7. An (a, 8)-module M of a graph G = (V, E) is a trivial (o, 3)-
module if either M =V or M| <a+[+1.

Definition 8. A graph is an (a, 3)-prime graph if it has only trivial («, 3)-
modules.
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Observe here that when o = 8 = 0, trivial («, 8)-modules are exactly trivial
(standard) modules, and («, 8)-prime graphs are exactly prime graphs.
From Lemma 2], we directly get the following result.

Corollary 1. A graph G = (V, E) with |V| < a+ 8+ 1 has only trivial («, 8)-
modules.

7

However, we want to distinguish “truly” (o, 8)-prime graphs and “degenerate
(a, B)-prime graphs.

Definition 9. A graph G = (V, E) is (a, B)-degenerate if |V| < a+ [+ 2.

Notice the difference between degenerate and trivial nodes. Just like the
a = 8 = 0 case where singletons are trivial modules but modules of two vertices
are degenerate, the definition of («, 8)-degenerate graphs is different from that
of trivial («, 8)-modules, and («, 8)-degenerate graphs will further be used to
define the (o, 8)-modular decomposition tree, instead of trivial modules in the
classic modular decomposition.

We call a non-trivial (o, 8)-module M a minimal non-trivial («, 3)-
module if every («, 8)-module strictly contained in M is trivial. The following
result directly follows from this definition.

Proposition 2. If A and B are overlapping minimal non-trivial (o, 8)-modules
of a graph G, then AN B is a trivial (o, §)-module of G.

From Theorem [I| we get the following result.

Corollary 2. For every graph G, the family of («, 8)-modules of G is a Moore
family.

In the standard setting for undirected graphs, if X and Y are overlapping
modules, then X UY, X\ Y, Y\ X and XAY are also modules [9124] - i.e.,
modules form a partitive family. Unfortunately, this does not always hold in the
(e, B) setting. But we can improve a little the algebraic setting of («, 8)-modules.

Theorem 2. Let A and B be two overlapping («, 8)-modules of a graph G. If
|[ANB|>a+ 8+1, then AUB is a (2a,253)-module of G.

Proof. Let z € V '\ (AU B). We have S, g(B) = () since B is an («, f)-module,
and |B] > o+ 8+ 1 since |[AN B| > a+ § + 1. Therefore, by Lemma
N, (B) and Ng(B) partition V \ B. Suppose z € N, (B). Then, z has at most
« non-neighbours in A N B and thus at least 8 + 1 neighbours in A N B. This
implies z € N, (A) since A is an («, 8)-module.

Consider first AU B. Since z € N, (B) and z € N, (A), it yields in the worst
case, that z has at most o non-neighbours in A\ B and at most a non-neighbours
in B\ A. As N,(B) and Ng(B) partition V \ B, to finish the proof we just use
the same reasoning on Ng(B), we get that AU B is a (2« 23)-module. O

Unfortunately similar results do not hold for differences and symmetric
differences.
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3.1 (a,3)-Modular Decomposition Trees

Definition 10. Let G = (V, E) be a graph. Two disjoint sets of vertices Ay B C'V
are said to be cc-connected if A C No(B) and B C No(A). Similarly, they are
said to be B-non-connected if A C Ng(B) and B C Ng(A).

In other words, A and B are a-connected if every vertex in A is an a-neighbour
of B and every vertex in B is an a-neighbour of A. They are -non-connected
if every vertex in A is a f-non-neighbour of B and every vertex in B is a
[-non-neighbour of A.

Proposition 3. If A and B are two disjoint (a, )-modules of a graph G with
|Al,|B| > a+ 8+ 1, then No(A) D B and Ng(B) D A are mutually exclusive.

Proof. Suppose to the contrary that N,(A) D B and Ng(B) 2 A.
Let ma g be the number of edges in G joining A and B.
We thus have

|B|- (Al —a) <map <|A]- 8 = |A]-|B|<B-|A[+a-|Bl. (1)
Now, let |A| = a+ 8+ a and |B| = a+ 8+ b, with a,b € N*. We then get
a-a+p-b+ab<0,

a contradiction.
O

Let us recall that F is called laminar if VF, F’ € F either FNF' = ) or
F C F’ or F' C F, using notation introduced in [42]. Such a family is naturally
tree-structured. A laminar family is called maximal if all its minimal elements
are either trivial or prime.

Definition 11. A mazimal laminar family of (o, 8)-modules is called an («, B)-
modular decomposition tree.

For a graph G, if Upc 7 F # V', one can always partition the remaining vertices
using trivial («, 8)-modules and then the leaves of the associated tree partition

V.

Theorem 3. Every graph G = (V, E) admits an («, 8)-modular decomposition
tree, for every (o, 8) with 0 < a, B < |V| — 1.

Proof. Let G = (V, E) be an arbitrary graph. If G is an («, §)-prime graph or
if V] <a+ g+ 2, then G admits only trivial («, 8)-modules. Let us partition
V' into sets with at most o + 3 + 1 vertices. Adding V' to these parts yields a
maximal laminar family.

Suppose now that G is not an («, 8)-prime graph. Then G admits at least
one non-trivial («, §)-module. We then show how to obtain a partition P =
{My,..., My} of V with k > 3 and |M;| > a+ G+ 1.

Let M; be any maximal (under inclusion) non-trivial (e, 5)-module, |M;]| >
a + B 4 1 since it is non-trivial, and let R be the set of remaining vertices:
R=V\ M.

We consider three cases:
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1.

If |R| > a+ S+ 1 and R contains B a non-trivial («, 8)-module of G. We
set My = B and apply the same reasoning on the remaining vertices, until
one of the 2 following case is reached.

. If |IR| > a+ S+ 1 and R does not contain any non trivial («, 8)-module of

G, then R is not an («, 8)-module of G, and we compute a partition P; of
R into trivial modules, P = P U P;. For sake of simplicity we can take as
P, the partition of R into singletons, which is compatible with the classical
modular decomposition since here R is an (a, §)-prime “part” of G. Note
that it could be the case that G(R) admits some non trivial («, 8)-modules
which are not (a, §)-modules of G.

. If |R| <a+ S +1. Then R is a trivial («, f)-module and let P = P U {R}.

Now for every non trivial and non prime M; we recurse on G(M;) and using

Proposition [[}4 we finally obtain a maximal laminar family and therefore a
(a, B)-modular decomposition tree. O

)
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(e

[1-—4] [5—8§]

All wivial: ({1, 1) (123)) (45, 7}) (46, 8}) ({9, 12}) (10, 11])
1 4 2 3 5 7 6 8 9 12 10 11 13 14 15

Fig. 3. A graph G and its (0,1)-decomposition where @« = 0,5 =1

Consider the graph in Fig. [3| and let « = 0,5 = 1. The set [1 — 12] =

{1,2,3,4,5,6,7,8,9,10,11,12} is a maximal (0,1)-module, which results in the

16
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partition of the vertices {[1 — 12],[13 — 16]} into (0,1)-modules. The set R as
defined in Theorem |3| above is R = [13 — 16], which is not a trivial module since
|R| >a+p3+1=2.

We continue the decomposition by recursing on both sides to obtain {[1 —
8],[9 — 12]} and {{13,16}, {14,15}}. Similarly the sets [1 — 8] and [9 — 12] can
be further decomposed.

As can be seen in the above example [5 — 16] is also a maximal (0,1)-module
overlapping [1 — 12]. Therefore maximal («, 8)-modules may overlap, which
unfortunately means, that such an (a, §)-modular decomposition tree is not
unique. Although such a decomposition tree can provide an exact encoding of
the graph (if the («, 8)-errors are traced), it does not provide an encoding of
all existing («, 8)-modules, see Fig. |4 for instance. Furthermore, although the
above proof is constructive, Theorem [3] does not lead to an efficient algorithm
for computing an (a, 8)-modular decomposition tree. In fact, we do not know of
any polynomial algorithm to compute M7, a maximal non-trivial («, 8)-module,
to start with.

Definition 12. k-parallel (similarly for k-series) operations :

For any integer k and two disjoint graphs G1,Go with V(G1) NV (G3) = 0,
we define k-parallel(G1,G2) to be the set of graphs defined on the vertex set
V(G1) UV(G2) by adding a k-factor cutset between V(G1) and V(G3), i.e. a
bipartite graph with degree bounded by k.

Furthermore, G € k-series(G1,Gs) if G € k-parallel(G1,Gs).

As a consequence of this definition, these operations are symmetric, i.e.,
k-parallel(G1, Gs) = k-parallel(Ga, G1).

Taking the decomposition viewpoint, when G' € k-series(G1, G3) (resp. G € k-
parallel(G1, Gs)) we say that G admits a k-series (resp. k-parallel) decomposition
into Gl, GQ.

A graph G admits a k-series decomposition if and only if G admits a k-parallel
decomposition.

For a k-parallel composition with k£ = 1 we simply add a matching between
the two graphs G; and G2 and we immediately notice the following property.

Proposition 4. If G € k-parallel(G1,Gs), then V(G1),V(G2) are both (0, k)-
modules of G.

Proof. Vz € V(G3), z admits at most k neighbours in V; which is exactly the
definition [3]of V/(G1) being a (0, k)-module. The same reasoning holds for V(G>).
O

As we shall see next, the problem of recognizing if a graph admits a 1-parallel
decomposition is related to a nice combinatorial problem first studied in [21].
The problem of finding such a decomposition is equivalent to finding a matching
cutset in a graph, i.e., an edge cut which is a matching, a well-known problem
studied in [AT0J34].
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Unfortunately however, it turns out —as one might expect— that finding such
a matching cutset in an arbitrary graph is an NP-complete problem, as shown
by Chvétal in [10].

Theorem 4 ([10]). Deciding if a graph has a matching cutset is NP-complete.

Corollary 3. Deciding if a graph has a 1-parallel (resp. 1-series) decomposition
is NP-complete.

Proof. By definition, if a graph admits a 1-parallel decomposition it admits a
matching cutset. The converse is also trivially true. For 1-series decomposition it
suffices to consider the complement graph. a

But we can have a result a little more involved.

Let us consider a graph which is a Cy = [a, b, ¢, d]. Clearly it can be decomposed
either by a l-parallel operation on the sets {a,b} and {c,d} or by a l-series
operation on the same sets. But we shall prove that it is a particular case.

Theorem 5. For a graph G with strictly more that 4(a+ +1) vertices, a-series
and B-parallel operations are mutually exclusive.

Proof. Suppose we have 2 different decompositions of V(G): One a-series in
A = {A4;,As} and B-parallel in B = {Bj, Ba}. Let us define the following
partition of the vertices of G: P = {A; N By, A; N By, A2 N By, A2 N Ba}. We
have to consider several cases depending on the size of |P|.

1. [P|=2.
Necessarily the partitions are the same, let Ay = Bj such that |4;] > n/2 >
2(ac+ B+ 1) then it contradicts Lemma [1}2 which forces A, N By = 0.

2. |P|=3.
By symmetry we may assume that By C A, then Ay C By and BiNAy = 0. If
| B1| > n/2 then using Lemma 2 forces on AoNBy = Ay = (), a contradiction.
Else we consider By with a similar reasoning.

3. |P| =4.
In this case, all the 4 parts of P are non empty. the 2 partitions A, B cross
and one, say Ay N By, has strictly more than (a+ 8+ 1) vertices.
So we can find a vertex z € As N By. Since z € As, z has at most «
non-neighbours in A;. As z € Bs, it has at most § neighbours in B;. We

have:
|A1 N By| —a < |N(z) N (A1 N By)| < S, which yields |41 N By < a+ 4, a
contradiction.

a

Let us call («, 8)-series-parallel decomposable a graph G that admits an
a-series or a [-parallel decomposition.

Corollary 4. For any fized integer k and a graph G = (V, E) computing an
(k, k)-series-parallel decomposition and a k-factor cutset are polynomially equiva-
lent.
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Proof. Suppose we have a polynomial algorithm A to compute a k-factor cutset.
By applying A on G and G we can obtain an (k, k)-series-parallel decomposition
of G if exists one.

Conversely, if |V| < 8k + 4, we can check all 28#+3 bipartitions of V(G) to
find if there exists k-series or k-parallel decomposition. This can be done in O(1)
since k is fixed.

Else if there was a polynomial algorithm that computes such a decomposition
when it exists, i.e. a partition of the vertices P = {43, A2}. Then in linear time
we can decide if it is a k-series or a k-parallel decomposition.

If we find a k-parallel decomposition, we can produce a k-factor cutset. And
if we find a k-series decomposition using Theorem [5] we can answer: There is no
k-factor cutset in G.

O

So if we can compute in polynomial time an (1, 1)-series-parallel decompositon
of a graph with strictly more than 12 vertices, then we can answer polynomially
if it has a matching cutset. A contradiction with the NP-hardness of finding a
matching cutset in a graph of Theorem

Open Problem 1 Does the NP-hardness hold for any k > 17 We
conjecture yes.

In the standard modular decomposition setting, the notion of strong modules,
i.e., modules that do not overlap any other module, is quite central. In the (¢, 8)-
modular decomposition setting, observe that there are no strong («, 8)-modules
other than {V} and the singletons {v : v € V'}. This comes from the fact that
when max{«, 8} > 1, every subset of vertices of size 2 is a trivial («, 8)-module.
Now, assume there is a standard strong module A # V with |A| > 1. By taking
any vertex v € A and any vertex u € V' \ A, we get an («a, §)-module of size 2
which overlaps A.

In the next section we will see not only that («, 8)-modular decomposition
trees are not unique but also that it could be NP-complete to find if a particular
one exists.

3.2 (a,B)-Cographs
Let us focus on the (a, 8)-series and («, 8)-parallel decompositions.

Definition 13. The class of («, 3)-cographs is the smallest class of graphs con-
taining all graphs having less than o+ 8 + 1 vertices and closed under a-series
and B-parallel operations.

Another way to see this new class of graphs.

An (a, B)-cograph is a graph that can be totally decomposed with a-series
and (-parallel decompositions until we reach graphs having less than o+ 8 + 1
vertices.
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Using Definition [13] above, it is clear that standard cographs are precisely
the (0, 0)-cographs. Moreover if G is an («, §)-cograph, then G is also an (o/, 8')-
cograph, for all o/ > o and 3’ > .

Furthermore one can associate to any («, 8)-cograph a decomposition tree
called an (a, 8)-cotree, whose nodes are labelled with a-series, or )-parallel and
the leaves correspond to graphs with at most (o + 8 + 1) vertices.

Every node of the cotree corresponds to an (a, 8)-module of G, and therefore
it yields a maximal laminar family. Therefore this cotree is a particular case of
(c, B)-modular decomposition tree.

Consider the two examples illustrated in Figures ] and 5] Fig. [4] shows a
(1,1)-cograph H that admits a unique (1, 1)-cotree. Fig. [5| shows a (0, 1)-cograph
G that admits two different (0, 1)-cotrees. Moreover, if we replace each vertex of
G in Fig. [5| by an isomorphic copy of G, and repeat this process, we can build a
(0, 1)-cograph which has exponentially many different (0, 1)-cotrees.

s ]
h d (0,0 ((0,)-Tri] ((0,1)-Tri) ((0,1)-Tri)
g c {a7 b} {C7 d} {e7 f} {g7 h}

Fig.4. A (1,1)-cotree of the (1,1)-cograph H on the left. Tri means trivial module.
Notice that H is not a usual cograph since it contains two induced Pi’s: {a, b, ¢,d} and

{67 f7g7h}

It should be noticed on this example that we may be forced to have 2
consecutive k-parallel nodes on a path from the root to a leaf in these news
cotrees. For usual cographs if we have 2 consecutive parallel nodes we can merge
them in a unique bigger parallel node having more children. But for the graph
of Fig. [5| we cannot build a bigger 1-parallel node since {a, b} is not 1-parallel
with the remaining vertices. But al least we know that for an (¢, 8)-cograph with
strictly more that 4(a + 5 + 1) vertices all its cotrees have a the same label on
their root, using Theorem

Definition 14. Using the terminology of [12] for combinatorial decompositions,
we will say that a graph G = (V, E) is (a, B)-brittle if every subset of V is an
(o, B)-module.

Of course, («,0)-complete graphs (i.e., complete graphs missing at most «
edges), and (0, 8)-independent graphs (i.e., independent sets with at most
edges) are (a, 8)-brittle, but they are not the only obvious ones; any path Py is
also (1, 1)-brittle.
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1-parallel 1-parallel

[(0,1)_1“1»;] [(0,1)-Tri] [(0,1)-Tri] [(0,1)-Tri] [(0,1)-Tri] [(0,1)-Tri] [(0,1)-Tri] [(0,1)-Tri]
{aby {ed}  A{ef}  {xy} {tx}  {ab} ey} {ed}

Fig. 5. The graph G on the top is a (0, 1)-cograph, with two different (0, 1)-cotrees.
The internal nodes have the same labels but the partitions of V' induced by the leaves
of the (0, 1)-cotrees are not the same.

As already seen previously, all graphs G with |V| < a+ +2 are («a, §)-brittle,
and we called them (o, 8)-degenerate to distinguish them from the “truly” (c«, 8)-
prime graphs. All these remarks raise the question of the characterization of
(«, B)-brittle graphs. Clearly, any graph G' with minimum degree at least |V| — «
or maximum degree at most g is («a, §)-brittle.

Definition 15. Let G = (V, E) be a graph and P = {V1,..., Vi } be the partition
of V associated with an («, 8)-modular decomposition of G. If every union of
parts from {Vq,..., Vi } is an (o, B)-module, we say that such a decomposition is
an (a, B)-modular brittle decomposition of G.

From Theorem [] we get the following result.

Proposition 5. For a graph G = (V, E) with |V| > 2(a+ 4+ 1), if G admits
an (a, 8)-modular brittle decomposition then it admits an a-parallel or [3-series
decomposition.

Proof. Suppose G admits a («, 8)-modular brittle decomposition with partition
P ={Vi,...,Vi}. Since it is a brittle decomposition, |J V;is a («, 8)-module,
1<i<k
and therefore the bipartition {Vi, |J Vi} is (a, 8)-modular. One of the 2 part,
1<i<k
say V1 has more than (a+ S+ 1) vertices. Therefore using Lemma 27 either we
have an a-parallel decomposition or a (-series one. a
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Open Problem 2 Can we completely characterize the («, 3)-brittle
graphs?

Recall that the Modular Decomposition Theorem [20] (Gallai’s Theorem)
says that every graph admits a unique modular decomposition tree, using series,
parallel and prime nodes. In this tree series and parallel nodes can be brittle
nodes.

In the (a, ) setting, k-parallel (resp. k-series) nodes are not always brittle.
Furthermore using Proposition [5{ an («, 8)-brittle node can be decomposed using
a-parallel or S-series decompositions. Therefore a Gallai type Theorem would
have 3 kinds of nodes mutually exclusive: k-series, k-parallel or («, 8)-prime. But
we do not know yet under which condition such a decomposition tree always
exists.

In the above-mentioned work [10], Chvétal showed that the matching cutset
problem is NP-complete on graphs with maximum degree four, and polynomial
on graphs with maximum degree three. In fact the problem of finding a perfect
matching cutset is also NP-hard [27]. On the other hand, computing a matching
cutset in the following graph classes is polynomial:

— graphs with maximum degree three [10],

— weakly chordal graphs and line-graphs [34],

Series-Parallel graphs [39],

claw-free graphs and graphs with bounded clique-width, as well as graphs
with bounded treewidth [],

graphs with diameter 2 [5]

(K14, K14+ e)-free graphs [29], and median graphs [36].

From the practical side, a particular subclass of (0, 1)-cographs has been
introduced and studied in network theory [30], namely the class of networks
obtained by starting from the one vertex graph and, at step ¢, taking two graphs
obtained in ¢ — 1 steps and joining them by a perfect matching. This class, called
Matching Composition Networks in [46], contains all hypercubes, as well as
all crossed, twisted and Mobius hypercubes. In general, PMG(k) is a family of
graphs recursively defined, that starts with all connected graphs on k vertices and,
at every step, add any graph that can be obtained by selecting two graphs within
the family having the same order and joining them with a perfect matching.

More formally, the family PMG(4), for instance, is defined as follows.

Definition 16 (PMG(4)). We start with the following seven connected graphs
on four vertices:

— P, Cy, K4, K1 3,
— a triangle with a pending edge,
— two triangles having an edge in common.
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At every step, a new graph is obtained from two graphs in the family having the
same order by joining them with a perfect matching.

Knowing that PMG(1) = PMG(2) and that they contain hypercubes, crossed,
twisted and Mobius hypercubes, we end this section with the following recognition
problem.

Open Problem 3 Given G = (V, E) with |V| = 2", what is the com-
plexity of recognizing whether G € PMG(k) or to one of its non-trivial
subclasses?

Although computing 1-parallel and 1-series decompositions are NP-hard, the
status of the recognition of (0,1)-cographs (resp. (1,0)-cographs, (1,1)-cographs)
are not clear yet, since these graphs are supposed to be totally decomposable with
these two operations this could make a difference. As for example the particular
case of (0,1)-cographs made up with median graphs for which an O(nlogn)
recognition algorithm exists [26]. But we conjecture that (0,1)-cographs (resp.
(1,0)-cographs, (1,1)-cographs) are NP-complete to recognize.

3.3 The Structure of (o, 3)-Prime Graphs

It is well-known that usual prime graphs are connected and their complement
also. we can generalize this result using another connectivity

Proposition 6. For an («, 8)-prime graph with strictly more than 2(a + 8 + 1)
vertices, G does not admit an a-factor cutset and its complement G does not
admit a [-factor cutset.

Proof. If G admits an a-parallel decomposition into G, G2, then at least one of
|[V(G1)| or |V(G2)| is greater than (a+ [ +1) and therefore G admits a non-trivial
(a, B)-module. Same argument for a [S-series decomposition of G which leads to
a [O-factor cutset on the complement graph. O

Proposition 7. The only (1,1)-prime graph of order 5 is Cs.

Proof. Let C5 = [a,b,¢,d,e]. To prove that Cs is a (1,1)-prime graph, we just
have to prove that every subset of four vertices is not a (1, 1)-module, which is
obvious since for every such subset A, the remaining vertex not in A is connected
by exactly two edges to A.

For the other direction, let G = (V| E) be a (1,1)-prime graph of order 5,
as there is no subset as non-trivial (1,1)-module. We consider any subset of
V' of size four, denoted as M. Let © € V' \ M, since M is not a (1, 1)-module,
|N(z) N M| >1and |N(z)N M| < 3, thus |[N(z) " M| =2 and deg(z) = 2. For
every subset of four vertices, we have the same argument, thus G is a 2-regular
graph, and the only one is Cj. ad
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Algorithm 1: Computing minimal («, 8)-modules.
Input: A graph G = (V,E) and a set A CV with |A| > a+ 8+ 2.
Output: M(A), the unique minimal (o, 8)-module that contains A
Mo+ A, i+ 0;
S+ {xeV\M: B <|N(z)N M| < |Mo|—a};
while S # () do

14— 1+ 1;

M; + M;—1US;

S+ {xeV\M;: B <|N(x)NM|<|M|—-a};

N o A W=

Notice here that the Petersen graph can be obtained by a (0, 1)-parallel
operation made on two copies of a Cj.

Obviously, we have the following inclusion: For all a < o' and all 5 < ', the
family of (¢, 8')-prime graphs is included in the family of («, 3)-prime graphs.
But can we improve this result? In the standard setting, the prime graphs are
nested. In particular, P, is the smallest prime graph, and all primes on n vertices
contain a prime subgraph on either n — 1 or n — 2 vertices, as shown in [41].

We pose the following problem.

Open Problem 4 Are the («, B)-prime graphs nested?

4 Computing the minimal (a, 3)-modules

Despite the negative hardness results in the previous sections, we shall now ex-
amine how to compute all minimal («, 5)-modules of a given graph in polynomial
time. As mentioned earlier, non-trivial (a, §)-modules have strictly more than
a+ 8+ 2 elements; and since they are closed under intersection, («, 8)-modules
have an underlying graph convexity, and thus (see Algorithm , we can compute
the minimal («, §)-module M (A) that contains a given set A with |A| > a+5+2,
by computing a modular closure via («, 8)-splitters. In fact, we build a series
of subsets M; that starts with My = A and satisfies M; C M;; for every i > 0.

Proposition 8. Algorithm computes the unique minimal (o, B)-module that
contains A in O(m - n) time.

Proof. If A is an (o, 8)-module, then in line 2, S = (); otherwise, all the elements
of S have to be added into M (A). In other words, using Lemma 3| there is no
(e, B)-module M such that : A C M C AUS. At the end of the while loop, either
M; =V or we have found a non-trivial («, 8)-module that contains A.

This algorithm obviously runs in O(m - n) time naivily or in O((a + ) - m)
time using standard algorithmic techniques. ad
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Algorithm 2: Computing minimal («, 8)-modules.

Input: A graph G and A C V(G) with |[A| > a+ 8 + 2.
Output: M(A), the minimal («, 8)-module that contains A
1 OPEN + A;
2 M(A) + 0
3 foreach u € V do

4 ‘ CLOSED(u) < FALSE; edge(u) < 0; non-edge(u) <+ 0;
5 while OPEN # () do

6 Select a vertex z from OPEN and delete z from OPEN;
7 Add z to M(A);

8 | CLOSED(z) + TRUE;

9 foreach u neighbour of z do

10 if CLOSED(u) = FALSE and u ¢ M(A) then

11 edge(u) + edge(u) + 1;

12 if B < edge(u) and a < non-edge(u) then

13 | Add u to OPEN

14 foreach v non-neighbour of z do

15 if CLOSED(v) = FALSE and v ¢ M(A) then

16 non-edge(v) < non-edge(v) + 1;

17 if 8 < edge(v) and a < non-edge(v) then

18 | Add v to OPEN

Algorithm [2] proposes a different implementation that uses a graph search
approach to compute the minimal («, §)-module containing A. This will allow us
to achieve a linear running time.

Theorem 6. Algorithm[g can be implemented in O(m + n) time.

Proof. We can implement Algorithm [2] as a kind of a graph search, using an
algorithm less naive than Algorithm [Il Algorithm [2| also computes the minimal
(a, B)-module that contains A in a graph search manner.

At the end of Algorithm [2 the set M(A) contains a minimal (e, 3)-module
that contains A. At first glance, this algorithm requires O(n?) operations, since
for each vertex we must consider all its neighbours and all its non-neighbours.

However, if we use a partition refinement technique as defined in [25], starting
with a partition of the vertices as P = {A,V \ A}. We then keep in the same
part, B(i,j), vertices x,y with edge(z) = edge(y) = i and non-edge(x) = non-
edge(y) = j. This way, when visiting a vertex z, it suffices to compute

B'(i+1,j) = B(i,j) N N(z), and
B//(ivj + 1) = B(lv]) - N(Z)v

for each part B(4, j) in the current partition. This can be done in O(|N(z)|) time.
It should be noted that the parts need not to be sorted in the current partition,

and we may have different parts with the same (edge, non-edge) values.
Algorithm [2| can thus be implemented in O(m + n) time. O
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Theorem 7. Using Algorithm[3, one can compute all the minimal non-trivial
(v, B)-modules of a given graph in O(m - n®*t8+2) time.

Proof. To do so, it sufices to use Algorithm [2] starting from every subset of
a + B+ 2 vertices. Since there exists O(n®*t5%2) such subsets, and Algorithm
runs in O(m + n) time for each one, we get a total complexity of O(m - n®+A+2)
time.

O

Corollary 5. Using theorem[7, one can compute a covering of V with an over-
lapping family of minimal (c, B)-modules in O(m - n®+#+2) time. Moreover, the
overlapping of any two members of the obtained covering is bounded by o + [+ 1.

Proof. Using theorem [7}, we can compute an overlapping family of minimal
(v, B)-modules in O(m - n®TA+2) time. But this family can possibly not be a full
covering of V since some vertices may not belong to any minimal non-trivial
(a, B)-module. To obtain a full covering, we then simply add the remaining
vertices as singletons. O

Corollary [5| can be very interesting if we are looking for overlapping commu-
nities in social networks, where the overlapping is bounded by o + 5 + 1.

Going a step further, we can use Theorem [2] and merge every pair A, B of
(a, B)-modules with |AN B| > a+ § + 1, either by keeping AU B as a (2, 23)-
module, or by computing M (AU B), the minimal (a, 8)-module that contains
AU B. This depends however on the structure of the maximal («, 5)-modules,
and unfortunately we do not know yet under which conditions there exists a
unique partition into maximal («, §)-modules.

Corollary 6. Checking if a graph is (o, 3)-prime can be done in O(m - n®+F+2)
time.

Proof. Easy using Theorem [7] 0

5 An Application on Bipartite Graphs

In this section, let G = (X,Y, F) be a bipartite graph with parts X and Y. By
allowing o + 3 errors in the decomposition, (a, §)-modules can be made up with
vertices from both X and Y. However, in some applications, we are forced to
consider X and Y separately. Consider for instance the setting where X and Y
represent the sets of customers and products, or the sets of DNA sequences and
organisms, in which case one would want to find regularities on each side of the
bipartition.

Definition 17. For a given bipartite graph G = (X,Y, E), we let
Fop(X)={M:M is an (o, f)-module of G and M C X}.

Note that X is not always an («, 8)-module of G.
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Proposition 9. For every two sets A,B € F, 3(X), ANB, A\ B and B\ A
are all in Fo g(X).

Proof. Using Theorem (1} the only (a, §)-splitters of the sets A\ B and B\ A
must belong to AN B; but since A, B C X, and X is an independent set, this is
not possible. m]

It should be noticed here that for A C X, the minimal («, 8)-module that
contains A does not always belong to F, g(X), since we may have to add («, 5)-
splitters from Y. Therefore we have to use an algorithmic approach different
from those developed in the previous section in order to compute Fo g(X).

Definition 18. Two sets A,B CV, A # B, with |A| = |Bl|=a+ 8 +1, are
said to be true (o, B)-twin (resp. false (a, B)-twin) in G if they satisfy the
following three conditions:

1. AUB is an (o, B)-module,
2. Vx € A, x € No(B) (resp. x € Np(B)),
3. Yy e B, ye N,(A) (resp. y € Ng(A)).

Observe that A and B are false («, 8)-twin sets in G if and only if A and B
are true (3, a)-twin sets in G.

Furthermore when applying Definition [I§] to bipartite graphs, we obviously
only have false («, §)-twin sets.

Proposition 10. A set M C X is an («, §)-module if and only if M is a union
of false (v, B)-twin sets.

Proof. Let A,B C M, with |A| = |B| = a+  + 1. Pick any vertex z € Y. If
z € No(A), then z € N, (M) and therefore z € N, (B). Therefore, A and B are
false (a, B)-twin sets since they are both included in X.

The converse directly follows from Definition a

Consequently, in terms of (a+ 8 + 1)-tuples, the sets of false (a, 8)-twin sets
partition the (a+ 8+ 1)-tuples. Furthermore, using the notion of false (a, 8)-twin
sets, we obtain the following theorem (recall that for a graph G, F, g is the set
of its (a, §)-modules whose elements are in X).

Theorem 8. For a given bipartite graph G = (X,Y, E), the mazimal elements
of Fa5(X) can be computed in O(n®+8(n +m)) time.

Proof. To do so, we first build an auxiliary bipartite graph, G’ = (A,Y, E(G)),
which represents the labelled incidence graph of the (a + 8+ 1)-tuples of vertices
of X. The set of vertices of G’ is thus the set A of these (o + 8 + 1)-tuples,

By Lemmal[l}4, we know that every such tuple T yields a partition of Y into
N, (T) and Ng(T). The set of edges of G’ is then defined by setting, for every
TeAandyeY,

Ty € E(G’) if and only if y € N, (T),
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which implies
Ty ¢ E(G') if and only if y € Ng(T).

Since every vertex in X belongs to at most O(n®+?) tuples from A, the number
of edges in F(G') is in O(m - n®*#).

Given the auxiliary graph G’, we now partition A into false twins. To this aim,
we use every vertex in Y to refine A with respect to (a, §)-neighbourhood. This
can be done in O(n®TA+1 4-n+P . m) time, using standard partition refinement
techniques [25].

Let Q@ = {A1,... Ax} be such a partition. We prove the following claim.

Claim: No element of F, g can contain two (o + 5+ 1)-tuples from different
parts of Q.

Proof. Let A; € A;, A; € A, with i # j, and S be a subset of X such that
A;UA; CS. Since i # j, there is a vertex y € Y such that (w.l.o.g.) A; € Nu(y)
and A; € Ng(y). Hence we have

[Ail —a < [SNN(y)| < |S] - [4;]+ 5,

which gives
B+1<|SNN@)|<I|S|—a-1,

and thus y is an («, 8)-splitter for S. O

Therefore, to find the maximal elements of F, g, we can restrict the search
to the A;’s. Let us now examine how to generate them. To this aim, we define
a labelling A that assigns to each ordered pair (y, A), withy € Y and A € A, a
subset of A as follows.

— IfyA € E(G') and ay,...,a, k < a, are the vertices from A non adjacent
to y, then we set A(y, A) = {a1,...,ax}.

— Symmetrically, if yA ¢ E(G’) and aq,...,an, h < (8, are the vertices from A
adjacent to y, then we set A(y, A) = {a1,...,an}

This labelling can be done while constructing the graph G’.
Then, a maximal element F' of F, g is just a maximal union of elements of
some A;, 1 <i < k, satisfying the following:

— For every vertex y € Y,
e if every element of A4; is adjacent to y, then |Uascr A(y, A)| < o,
e otherwise, | Uacr A(y, A4)| < 8.

Note that all vertices in A; are false twins, since the graph G’ is bipartite,
and therefore connected the same way to Y.

To produce these maximal sets, we start with @ = 8 = 0, in which case
the only maximal module has an empty label. Let M denote this module and
Moo = {My} denote the set of maximal elements at this step. We then increase
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either a or B by one, and recursively compute the new set, My11,8 or My g1,
of maximal elements from the previously computed set M, g (note that every
maximal («, $)-module is contained in a maximal (« + 1, 3)-module and in a
maximal (a, 8 + 1)-module as well).

For a = 3 =0, My is unique. For a = 3 = 1, there are at most |Y|? maximal
(1,1)-modules in F; ;. Hence, there are at most |Y|**# maximal (o, 3)-modules
in Fu,g. This computation is therefore bounded in the whole by

(a+ BTGV - (1X|H7,
which is in the order of O((|Y|*+A+1) . (| X |a+A+1Y). O

Note that these maximal elements of F, g(X) may overlap. It remains to test
the quality of the covering obtained on some real data graphs. We leave this as
something to explore for data analysts.

6 Conclusion

Before we conclude, we want first to expose the reader to a different way to
approach the approximation of modules.

6.1 k-splitter Modules: An Alternate Approximation

Another natural way to approach the problem of approximating modules is by
restricting the number of splitters a module can have. Recall that in the standard
modular decomposition setting, a splitter of a module M in a graph G = (V, E)
is a vertex v € V'\ M such that there exists at least two vertices a,b € M with
av € FE and bv ¢ E. By restricting the number of splitters outside a module, we
get the following definition — which intuitively just allows at most k “errors” in
terms of connectivity.

Definition 19. For a given graph G = (V, E), a subset M of V is a k-splitter
module if M has at most k splitters.

Notice then that by setting k = 0 in the above definition, we recover the
standard modular decomposition setting [24], i.e., for every x € V' \ M, either
MNN(z)=0or MNN(z) = M. So, for this approximate setting, we will
necessarily only consider the case k < |[V(G)| — 1.

We begin with some obvious remarks.

Proposition 11. If M is a k-splitter for G, then the following holds.

1. M is a k'-splitter module for G, for every k' > k.

2. M is a k-splitter module for G.

3. If s is a splitter for M, then s is also a splitter for every set M' D M with
sé¢ M.
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Proposition 12. The family of k-splitter modules of a graph G = (V, E) satisfies
the following.

1. Every set A CV with |A| <1 or |A] > |V| —k is a k-splitter module of G.
(We call such a set A a trivial k-splitter module.)

2. For every two k-splitter modules A, B CV of G with ANB #0, AUB is a
2k-splitter module of G.

3. For every two k-splitter modules A,B CV of G with ANB #0, ANB is a
2k-splitter module of G.

Proof.

1. This follows from the definition.

2. There cannot be a splitter of A U B that is not a splitter of either A or B
since AN B # (. We get the 2k in the worst case, when both A and B have
two disjoint sets of k splitters outside of AU B.

3. A splitter of AN B in V' \ (AU B) is a splitter of both A and B. A splitter
of AN B in A is a splitter of B and a splitter of AN B in B is a splitter of
A. Therefore, the number of splitters of A N B is at most the sum of the
numbers of splitters of A and B, i.e., 2k.

(]

Proposition 13. If A and B are two non-trivial k-splitter modules of a graph
G = (V,E), then A\ B is a (k+ |AN BJ)-module of G.

Proof. There are at most k splitters of A\ B in V' \ A, and at most |A N B
splitters of A\ B in AN B. O

Proposition 14. For a graph G = (V, E) and a subset A C'V, there may exist
different minimal (under inclusion) k-splitter modules containing A.

Proof. Suppose A admits k + 1 splitters. Every one of these k + 1 splitters can
be added to A in order to obtain a k-splitter module. a

In conclusion, this approximation variation is not closed under intersection,
unfortunately. There was no way to define some sort of convexity, and thus no
easy way to define a closure operator with this notion, which is why we have
focused our study on («, 3)-modules instead.

6.2 Conclusions and Perspectives

In this work, we introduce a new notion of modular decomposition relaxation.
This notion of (a, §)-module yields many interesting questions, both from a
theoretical or practical point of view. Standard modular decomposition is too
restrictive for graphs that arise from real data; do («, 8)-modules indeed often
arise in this setting? We believe this relaxation of modular decomposition can
definitely find applications in practice.

On the theory side, this new combinatorial decomposition may help to better
understand graph structuration that can be obtained when grouping vertices
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that have similar neighbourhood. Such an idea has been successfully used with
the notion of twin-width [3l2]. Twinwidth 0 graphs are exactly the cographs.
(0, 1)-cographs seems to be a wide class of graphs and it could be interesting to
characterize them for example by a list of forbidden subgraphs.

Very easily we have that if G € k-parallel(G1,G2) then Twinwidth(G) <
k+ Max{Twinwidth(Gy), Twinwidth(G2)}. It could be interesting to study the
relationships between these notions and in particular, we raise the following
question:

Open Problem 5 Can we compute polynomially the twinwidth of a
given («, B)-cograph when one of its cotree is given?

Furthermore it is related to fundamental combinatorial objects as for example
matching cutsets and their generalization. In particular the («, 8)-cographs that
contain many known graph classes seem to be very promissing.

Another natural and useful application of («, §)-modules concerns approxima-
tion algorithms. Similarly to how cographs are the totally decomposable graphs
with respect to standard modular decomposition, we can define («a, §)-cographs
as the totally decomposable graphs with no (o, 8)-prime graphs. Now consider
the classical colouring and independent set programs on cographs. The linear
time algorithms for these problems both use modular decomposition. Roughly
speaking, the algorithms compute a modular decomposition tree, and keep track
of the series and parallel internal nodes of the cotree by scanning the tree from
the leaves to the root. Now for aw + 3 < 1, we can get a simple 2-approximation
algorithm for (a, 8)-cographs for both colouring and independent set, just by
summing over all the (a, 3)- errors.

Our work leaves many interesting questions open (five open questions and
one conjecture), as the study of (a,)-prime graphs for instance. We have
also exhibited new classes of graphs, such as the (1,1)-cographs, that contain
many interesting subclasses and on which it would be interesting to consider
the Erdés-Hajnal conjecture [16], which holds for cographs and is closed under
substitution [I]. Our work could also be related to the very interesting new
generalization of cographs introduced in [3].

We have also presented polynomial time algorithms that we believe could all
be improved. It is important however to keep in mind that since the number of
unions of overlapping minimal modules can be exponential, it is thus hard to
compute from the minimal («, #)-modules some hierarchy of modules. However,
perhaps a better way to decompose a graph is to first compute the families of
minimal modules with small values of @ and 3, and then consider a hierarchy of
overlapping families.
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