Efficient Generation of the Ideals of a Poset

Lalla Mouatadid
Advisor: Dr. Gara Pruesse
Vancouver Island University

MathFest 2009

Overview

- Definition \& Background Information
- Problem \& Algorithm
- Open Problems
- Questions

Definitions

- A partial order set (poset) denoted $P(E, \leq)$ is the ground set E of elements where \leq is the order relation between elements of E.

$$
\begin{aligned}
E= & \{A, B, C, D\} \\
& \bullet A \leq C \\
& \bullet B \leq D
\end{aligned}
$$

- A and B are incomparable

Definitions

- An Ideal of a poset is a subset I $\subset E$, such that if $x \in I$ and $y \leq x$ in P, then $y \in I$.

- $P(E, \leq)$
- $E=\{a, b, c, \ldots, g\}$
- $I=\{a, b, c\}$
- $(c \in I)$ and $(a \leq c)$
$\Rightarrow a \in I$
- $I^{\prime}=\{a, c\}$ is not an ideal because $b \leq c$, but $\mathrm{b} \notin \mathrm{I}^{\prime}$

Ideals of $P(E, \leq)$:
$\{\varnothing\},\{a\},\{b\},\{d\},\{a, b\},\{a, d\},\{b, d\},\{a, b, d\},\{a, b, c\},\{a, b, c, d\},\{a, b, d, g\},\{a, b, c, d, e\}$ $\{a, b, c, d, e, g\},\{a, b, c, d, e, f\},\{a, b, c, d, e, f, g\}$

Definitions

- A Gray Code is a listing of all instances of combinatorial objects such that successive instances differ in only one bit
- Example: For a binary system, the listing of all bit strings in a REFLECTED gray code manner, where $n=3$ is the number of bits, is: 000, 001, 011, 010, 110, 111, 101, 100

Posets \& Ideals

- Ultimate Goal: Generate ideals efficiently and in a gray code manner
- Most efficient algorithm runs in O(logn) but is not a gray code. [Squire 1995]
- Pruesse and Ruskey's algorithm (1993) is a gray code but takes $O(n)$ in the worst case
- Our Focus: Crown posets (a class of N posets)
- Our goal is to list all the ideals of a poset in a gray code manner in constant amortized time.

Crown Posets

- A crown poset is a poset with elements $\{1,2, \ldots$, $2 m\}$ where $m \geq 2$ and in which $i<(m+i),(i+1)<(m+i)$ for each $i=1,2, \ldots,(m-1)$, and $1<2 m$, and $m<2 m$.

Crown Posets

- The Lucas numbers L_{n} are defined as follow:
$L(n)=L(n-1)+L(n-2)$ for $n>1$, where $L(0)=2$ and $L(1)=1$
$2,1,3,4,7,11,18,29,47,76,123 \ldots$
- The number of ideals of a crown poset $P(E, \leq)$ are counted by the even Lucas numbers $L_{2 n}$ where $|E|=2 n$

Example:

- For $n=1$
$I=\{\varnothing\},\{A\},\{A, B\}$
$L(2 n)=L(2)=3$

Lattice Graph

Algorithm

- Let $P(E, \leq)$ be a crown poset where
$|E|=2 n$
- array_ideals[L(2n)]
- $m=\#$ of possible bit strings of the minima $=2^{\wedge} n$
- array_bitstr[n]
loop(m times)\{

0. Total parity $=0$
1. Set prefix parity
2. loop(n times)\{
2.0 Update prefix parity
2.1 Find bit to flip (i.e 1st bit with same parity as the prefix)
2.2 Update array_bitstr
2.3 Check bit's neighbors
2.4 Update array_ideals
2.5 List all subsets of maxima
2.6 Update total parity
2.7 Flip last bit changed in ideals[] and restore array_bitstr
\}
\}

Example

$$
\begin{aligned}
& \operatorname{minima}=\{1,2,3\} \\
& \operatorname{maxima}=\{4,5,6\} \\
& \text { Bit strings } \Rightarrow \text { Feasible set } \\
& 000 \Rightarrow\{\varnothing\} \\
& 001 \Rightarrow\{3\} \\
& 011 \Rightarrow\{2,3\} \\
& 010 \Rightarrow\{2\} \\
& 110 \Rightarrow\{1,2\} \\
& 111 \Rightarrow\{1,2,3\} \\
& 101 \Rightarrow\{1,3\} \\
& 100 \Rightarrow\{1\}
\end{aligned}
$$

Example

minima $=\{1,2,3\}$
maxima $=\{4,5,6\}$
Bit strings:

$$
\begin{aligned}
000 & \Rightarrow\{\varnothing\} \\
001 & \Rightarrow\{3\} \\
011 & \Rightarrow\{2,3\} \\
& \Rightarrow\{2,3,5\} \\
010 & \Rightarrow\{2\} \\
110 & \Rightarrow\{1,2\} \\
& \Rightarrow\{1,2,4\} \\
111 & \Rightarrow\{1,2,3\} \\
& \Rightarrow\{1,2,3,4\} \\
& \Rightarrow\{1,2,3,4,5\} \\
& \Rightarrow\{1,2,3,4,5,6\} \\
& \Rightarrow\{1,2,3,4,6\} \\
& \Rightarrow\{1,2,3,6\} \\
& \Rightarrow\{1,2,3,5,6\} \\
& \Rightarrow\{1,2,3,5\} \\
101 & \Rightarrow\{1,3\} \\
& \Rightarrow\{1,3,6\}
\end{aligned}
$$

$$
100 \Rightarrow\{1\}
$$

Analysis

- The minima bit strings are generated in a binary reflected gray code nbit strings
- We only add or remove one element at each step to get the next bit string (i.e $O(1)$)
- The prefix parity to updated at each step
- The feasible maxima bit strings are generated in the same gray code as the minima's
- At each step, one of the following happens:

1. Add or delete a maximal element

If removing last maximal:
2. Add or remove minimal element
$\Rightarrow 2$ changes happen at the most.

Open problems

- Main problem: Generate ideals of ANY poset in constant amortized time.
- The Middle Levels problem:
- For the hypercube of order n (where n $=2 k+1$), determine if there is a Hamilton cycle in the middle levels k and $\mathrm{k}+1$ of the lattice graph

Hypercube of order $n=5$

Special thank you to

- Dr. Gara Pruesse
- Vancouver Island University
- MAA
- Alycia Kolat

Any questions?

Thank you

