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Overview. In an attempt to understand graph searching on cocomparability graphs has been so suc-
cessful, one quickly notices that the orderings produced by these traversals are precisely words of some
antimatroids or convex geometries. The notion of antimatroids and convex geometries have appeared in the
literature under various settings; in this work, we focus on the graph searching setting, where we discuss
some known geometries on cocomparability graphs, and then present new structural properties on AT-free
graphs in the hope of exploring whether the algorithms on cocomparability graphs can be lifted to this larger
graph class.

1 A Primer on Convexity

1. Convexity spaces. A tuple (V,N ), where V is a finite ground set, is a convexity space ifN is a collection
of subsets of V such that ∅ ∈ N , V ∈ N , andN is closed under intersection. The elements ofN are called
convex sets. One can define a convex hull of a subset S ⊆ V in the natural way as τN (S) being the
intersection of all the convex super-sets of S. Formally: For a ground set V , the map τ : 2V → 2V is a
closure operator if it satisfies the following conditions:

• τ(∅) = ∅

• ∀X ⊆ V , X ⊆ τ(X).

• ∀X,Y ⊆ V with X ⊆ Y then τ(X) ⊆ τ(Y ).

• ∀X ⊆ V , τ(τ(X)) = τ(X).

2. Extreme Points. With every closure operator, it is natural to talk of extreme points as the set of points
one can delete and still maintain a convex set. To this end, we define an extreme point operator as a map
from sets S ⊂ V and extreme points of S. Formally: An extreme point operator is a map ext : 2V → 2V

where ∀A ⊆ V , ext(A) = {x ∈ A : x /∈ τ(A-x)}. An element in ext(A) is called an extreme element in
A.
3. Betweenness. There is a close relationship between convexity spaces and the notion of abstract between-
ness defined by Menger [16]. Betweenness is a ternary relation, that relates the “placement” of a point z
between two other points a and b. For sake of simplicity we say z belongs to the interval I[a, b] when z is
between a and b. As noticed by Chvátal in [6], several abstract betweennesses can be defined on graphs.
Given a betweenness relation, one can easily deduce a convexity as follows:

C ⊆ V (G) is convex if ∀a, b ∈ C and ∀z ∈ I[a, b], z ∈ C

4. Convex Geometries. If a convexity space satisfies the following condition, known as the anti-exchange
property, then it is called a convex geometry. [The Anti-Exchange Property] Let S ⊆ V and a, b,∈ V such
that a, b /∈ τ(S). Then a ∈ τ(S∪{b}) =⇒ b /∈ τ(S∪{a}). For a convex geometry (V,N ), we define the
convex sets ofN as X ⊆ V such that τN (X) = X . Introduced first by Edelman and Jamison in 1985 [12],
convex geometries have appeared in the literature under different names and aspects, the most famous one



being antimatroids.

5. Antimatroids. Given a convex geometry (V,N ), then the set system (V,F) where F = {X : X =
V \Y, Y ∈ N ) is an antimatroid. We call the sets X ∈ F feasible sets. If the reader is more familiar with
greedoids, then the following definition of antimatroids might be more suitable. A set system A = (V,F)
is a antimatroid if:

• ∅ ∈ F

• ∀X ∈ F , X 6= ∅, ∃x ∈ X such that X\{x} ∈ F

• ∀X,Y ∈ F , X ( Y, ∃x ∈ X\Y such that Y ∪ {x} ∈ F

A set system is called accessible if it satisfies the first two conditions of the above definition. The third
condition is sometimes refered to as the augmentation property.

6. Basic Words. An antimatroid can also be viewed as a language L over an alphabet Σ, when L satisfies
the following conditions:

• The prefix of every string α ∈ L is also in L.

• For any two strings α, β ∈ L, if α differs from β by at least one character s, then β · s ∈ L – this is
just the augmentation property.

• Every character s ∈ Σ appears in at least one string of L, and no character appears more than once in
a given string.

By the augmentation property, there exists always strings in L that consist of all the characters in Σ. We call
these strings the basic words of L – (or of the antimatroid).

1.1 Elimination Schemes and Antimatroids

Antimatroids capture various combinatorial graph properties useful algorithmically. In particular, various
eliminations orderings on graph classes are basic words of some well defined antimatroid, and the feasible
sets of the antimatroids are precisely the suffixes of these elimination orderings.

A well studied antimatroid is the one that rises from chordal graphs, from PEOs more specifically. The
set system (V,F) whose ground set are the vertices of a chordal graph, and its feasible sets are the suffixes
of PEOs form an antimatroid [14]. Given such an antimatroid, the corresponding convex geometry is the
tuple (V,N ) where S ⊆ V is convex if for all chordless paths between the vertices in S are also in S. That
is, for all a, c ∈ S, if b lies in a chordless ac path in G, then b ∈ S. This is known as the monophonic
convexity. Indeed the set system (V,N ) is a convex geometry if and only if G is chordal [14].

Another well studied antimatroid is the one that rises from double shellings of posets. Let P (V,≺) be a
poset. The double shelling antimatroid on P is the set system whose feasible sets are unions of ideals and
filters of P . It is easy to see that the corresponding convex geometry is a set system (V,N ), where a set
S ∈ N is convex if for all a, c ∈ V , every b that satisfies a ≺ b ≺ c or c ≺ b ≺ a is also in S.

In this work, we study convex geometries that rise from graph searches. Motivated by the success
LexDFS in particular has had on cocomparability graphs, when LexBFS has failed, we initially get the fol-
lowing: For a graphG(V,E), let F be the set of end vertices of LexDFS cocomparability orderings ending
at a vertex f . The set system (V,F) is an antimatroid. We omit the proof of this claim because we later



prove a more general result below. This property is also not “satisfying” since the LexDFS cocomparability
orderings are just linear extensions, and we already know of the shelling antimatroid of posets – which we
note is different than the double shelling one mentioned above. For a given graph property P , we say that
a vertex ordering τ = v1, v2, . . . , vn is P-perfect if ∀vi,P(vi) is true for vi in G[vi, . . . , vn]. We say that P
is hereditary if it satisfies the property that ∀v ∈ V (G), and ∀H subgraph of G, if P(v) holds in G, then
if v ∈ V (H), P(v) holds in H as well. Examples of Theorem 1 include property P(x) = {d(x) ≤ k}
for instance, or P(x) = {x is not the middle vertex of a P4}, or P(x) = {x is a, true or false, twin}. Us-
ing the above definition, we observe the following simple but key theorem, which generalizes the classical
antimatroid of simplicial elimination orderings.

Theorem 1. If P is a hereditary property of a graph class G, then the setN of prefixes of P-perfect orderings
form an antimatroid (V,N ).

Proof. We use Definition 1 of an antimatroid to prove this claim. It is easy to see that (V,N ) is an accessible
set system. We’ll that the augmentation property holds as well.
Let σ = x1, . . . , xn and τ = y1, . . . , yn be two P-perfect orderings of a graph G.
Let X = x1, . . . xh and Y = y1, . . . yk be two prefixes of respectively σ and τ .
Suppose X \ Y 6= ∅, and let xi be the first element in X which does not belong to Y . Therefore xi ∈
{yk+1, . . . yn}, say xi = yj with k + 1 ≤ j ≤ n.
Let Y ′ = {y1, . . . , yk, xi}; we show that Y ′ is a prefix of some P-perfect ordering of G. By the choice
of xi as the first element in X not in Y , it follows that {xi, yk+1, . . . yn} ⊆ {xi, . . . xn}. Since P is a
hereditary property, P(xi) holds on the subgraph G[{xi, yk+1, . . . yn}]; and thus, the following ordering
τ ′ = y1, . . . , yk, xi, yk+1, . . . , yj−1, yj+1, . . . yn is a P-perfect ordering ofG. Therefore Y ′ is a valid prefix.

Consider a generic graph search S on a graph G(V,E). If we consider the sequence of visited vertices
as follows: V0 = {x0}, V1 = {x0, x1}, . . . Vn = {V }, then this set system yields a convexity on V (G) by
defining the closure operator as ∀A ⊆ V , τ(A) = Vi, where i is the smallest index for which A ⊆ Vi. Let’s
call this convexity an S-convexity.

Lemma 1. If G is connected and S is a generic search then its S-convexity is a geometric convexity.

Proof. To prove the claim, it suffices to show the anti-exchange property. Consider A a convex set and
x, y /∈ τ(A). Suppose x ∈ τ(A+ y), then vertex x was visited before vertex y since S is a generic search.
And thus y /∈ τ(A+ x).

As a consequence, since complements of convex geometries are antimatroids, the suffixes of generic graph
searches considered as sets form an antimatroid; this includes the LexDFS cocomparability orderings of
Property 1.1, and raises the very natural question:. PrForwhichgraphsearchesandwhichgraphclassesisthisS−convexityaninterestingconvexityongraphs?
Theorem 2. Let S be a generic search and G an hereditary class of graphs. The three following properties
are equivalent for a graph convexity C:

(i) At each step of the search S, the set of visited vertices is a convex set of C.

(ii) The last vertex visited by S is extreme for the C convexity.

(iii) The suffixes of the search S considered as sets form an antimatroid.

Proof. The proof is quite obvious, it suffices to use the definition of S-convexity and the fact that the feasible
sets of an antimatroid are the compelement sets of its corresponding convex geometry.



If there is a convexity C and a graph search S for which Theorem 2 holds, we say that S is compatible
with the C convexity. As a consequence, for a hereditary class of graphs, to check the compatibility of a
given graph search with a convexity, it is enough to test whether the last vertex is always extreme for this
convexity.

let’s examine some properties for the graph convexities described above; in particular on graph searches
when applied to cocomparability and AT-free graphs, using the following two convexities below. By con-
vention, an extreme vertex for V , will be called an extreme vertex of G.

• cc-convexity: Cocomparability convexity : Icc[x, y] = {z|x, y, z is an independent triple and ∀σ co-
comparability ordering of G, either x ≺σ z ≺σ y or y ≺σ z ≺σ x}.

• 2p-convexity: 2-paths convexity: I2p[x, y] = {z|x, y, z is an independent triple and ∃P,Q two in-
duced paths, such that P from z to x avoids N [y], and Q from z to y avoids N [x]}.

We present the following theorem which connects these two type of convexities. Notice however, that the
converse of the theorem is not true as can be seen with any long chain.

Theorem 3. If G is a cocomparability graphs, then z ∈ I2p[x, y] =⇒ z ∈ Icc[x, y].

Proof. Let σ be a cocomparability ordering of G such that z ≺σ x ≺σ y. That is z /∈ Icc[x, y]. Suppose
z ∈ I2p[x, y]; thus xyz is an independent triple of G. Since there exists a path in G from z to y avoiding the
neighbourhood of x; consider the first edge uv going across x in this path. Such an edge must exist since
z ≺σ x ≺σ y. Necessarily ux, xv /∈ E since x misses this yz path, and therefore uv is an umbrella over x
contradicting σ being a cocomparability ordering. If z is after x and y in σ, then we the path from z to x
instead.

2 New Properties on AT-free Graphs

Recall that a vertex v is said to be admissible if for every pair y, z such that x, y, z are independent, y
hits every xz-path or z hits every xy-path. An admissible elimination ordering – AEO – is an elimination
ordering σ = v1, v2, . . . , vn where every vi is admissible in G[v1, . . . , vi]. Two classical results on AT-free
graphs state:

Theorem 4. [9] Every LexBFS ordering on an AT-free graph is an AEO. In particular, the end vertex of a
LexBFS traversal is always admissible.

Theorem 5. [9] Let x be the end vertex of a LexBFS(G) AT-free, and y the end vertex of a LexBFS(G)
which starts at x, then (x, y) is a dominating pair in G.
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Figure 1: The sun+ (left) and the rocket (right).

Notice that the existence of one single admissible elimination ordering does not characterize AT-free graphs
– as can be seen in Fig. 1. Both graphs contain an asteroidal triple: ace, yet both graphs admit an admissible



elimination ordering. The sun+ graph has a LexBFS ordering σS = x, a, b, c, d, e, f that is an AEO [10].
The rocket graph has σR = a, b, c, d, e, f, g, h as an AEO, and vertex h is the only admissible vertex in the
graph, yet vertex h will never be the end vertex of a LexBFS or even a BFS. So if we want to use Theorem 4
to build a recognition algorithm for AT-free graphs, we need to check all LexBFS orderings of the input
graph. This indeed is was proven by Corneil and Köhler:

Theorem 6. [8] G is AT-free if and only if every LexBFS search is compatible with the 2p-convexity.

Another way to recognize AT-free graphs is by checking if the input graph has an AT-free ordering.
Recall this is the vertex ordering characterization of this graph class: [10] An ordering σ is an AT-free
ordering if for every z ∈ I2p[x, y], either z ≺σ x or z ≺σ y. One way to tie LexBFS orderings – and thus
AEO’s– to AT-free orderings is the following:

Lemma 2. Let σ be a LexBFS ordering of G ending at x. There exists an AT-free ordering τ of G where x
is the end vertex of τ .

Proof. Suppose not. Consider τ = u1, . . . , x, . . . , un an AT-free ordering ofG. Let y be the left most vertex
to the right of x in τ .

It’s easy to see that if xy ∈ E, we can swap x and y in τ and create a new AT-free order τ ′ ofG. Suppose
xy /∈ E. Suppose further that swapping x and y would create a bad triple: that is, there exists some vertex
z such that x ∈ I2p[z, y] and z, y ≺τ ′ x. This means in τ , we have z ≺τ x ≺τ y which contradicts x being
admissible. Therefore it suffices to repeatedly swap x in new orderings τ ′ until it is at the end of an AT-free
ordering of G.

However, in [10], Corneil and Stacho gave an example of an AT-free graph for which no LexBFS
ordering produces an AT-free ordering. Recently (2018), Beisegel [3] gave a variant of BFS that produces
AT-free orderings.

Lemma 3 (The Private Neighbour Path). Let σ, π be two LexBFS orderings ofG where π = LexBFS+(σ).
For any two vertices a, b such that a ≺σ b and a ≺π b, there exists an induced path Q starting at a, where
all the vertices (except possibly a) in Q are non adjacent to b.

Let label(v) be the label of vertex v as assigned by the LexBFS algorithm, when v was visited.

Proof. Consider the ordering of a and b in π, at the time a was chosen by LexBFS, either a and b had
equal labels or label(a) ≥lexico label(b). If a and b had equal lexicographic labels then the + rule would
have broken ties by choosing b first since a ≺σ b. Therefore label(a) ≥lexico label(b); that is there exists
a private neighbour of a with respect to b, call it a1, in π such that a1 ≺π a ≺π b and a1a ∈ E, a1b /∈ E.
Choose a1 to be the left most such private neighbour of a in π.

If a1 ≺σ b then a1 ≺σ b and a1 ≺σ b, and by the argument above, there exists a2, a private neighbour
of a1 with respect to b in π such that a2 ≺π a1 ≺π a ≺π b. By the choice of a1 as the left most private of
a in π with respect to b, it follows that a2a /∈ E. Again, chose a2 to be the left most such private neighbour
of a1 in π.

By repeating this argument, and by the finiteness of the graph, we eventually get to a vertex aj that has
a private neighbour aj+1 with respect to b in π, and flips ordering with b from σ to π, that is:

aj+1 ≺π aj ≺π . . . ≺π a1 ≺π a ≺π b and

a ≺σ a1 ≺σ . . . ≺σ aj ≺σ b ≺σ aj+1

Thus the induced path constructed by concatenating the edges aj+1aj ·ajaj−1 · . . . ·a2a1 ·a1a avoids b with
the exception of possibly ab in E.



A well known property on cocomparability graphs says that the end vertex of an arbitrary LexBFS
ordering on G cocomparability is a sink in a poset [15]; as a corollary we get the following:

Corollary 2.1. Consider a sequence of LexBFS+ orderings on a cocomparability graph:

σ1 = LexBFS(G, a) = a . . . x σ2 = LexBFS+(σ1) = x . . . y σ3 = LexBFS+(σ2) = y . . . z

Then dist(x, z) ≤ 1.

Proof. If this is not the case, then xz /∈ E, which means x and z are comparable in a poset. This contradicts
both being sinks, with the possible special case that xz is a maximal chain in the poset. That is, without
loss of generality x is a sink, and z is a source. Since y is also an end vertex of a LexBFS, y is also a sink
(or a source). If y is a sink then x‖y and xy ∈ E, which using σ2 implies that x is universal in G and thus
adjacent to z. If y is a source then y‖z and yz ∈ E, which using σ3 implies y is universal in G, and in
particular yx ∈ E. Using this in σ2 and the fact that z ≺σ2 y implies that x is also universal in G, and thus
adjacent to z.
Therefore dist(x, z) ≤ 1.

In AT-free graphs, we get the following:

Lemma 4. Consider a sequence of LexBFS+ orderings on an AT-free graph:

σ1 = LexBFS(G, a) = a . . . x σ2 = LexBFS+(σ1) = x . . . y σ3 = LexBFS+(σ2) = y . . . z

Then dist(x, z) ≤ 2.

For succintness, let Pab denote an induced ab path in the graph. If c is a vertex on Pab, then we write
Pac to refer to the induced subpath from a to c in Pab. If c is b’s neighbour on Pab, then we can write
Pab = Pac · cb to refer to the concatenation of Pac with the edge cb. We also write |Pab| to denote the length
of this path.

Proof. Suppose for sake of contradiction that z 6= x and xz /∈ E. By Theorem 5, both (x, y) and (y, z) are
dominating pairs in G. Let Pyx be a shortest induced yx path. Then Pyx is dominating, and z is either on
Pyx or has a neighbour on Pyx. If the former, then since Pyx is induced, the subpath Pyz is induced and thus
x misses Pyz unless xz ∈ E, which is a contradiction to our assumption. But then (y, z) is a dominating
pair, which means Pyz must be dominating. Thus z has a neighbour on Pyx, let w be such a neighbour, and
choose w as the left most vertex on Pyx = y . . . w . . . x that is adjacent to z. Thus for all v ∈ Pyw, zv /∈ E.

If w = y, then yz ∈ E. This implies that G is a clique since y is a LexBFS end vertex and σ3 starts at
y and ends at z, which in turn implies zx ∈ E. So suppose w 6= y, and suppose further that |Pwx| > 1, then
Pyw · wz is a dominating path that misses x. Thus |Pwx| = 1, i.e. wx ∈ E. Therefore

dist(x, z) = 2 = |xw · wz| (1)

To prove the next theorem, we need the simple key observation:

Fact 2.2. If G is AT-free and x ∈ I[y, z], then y /∈ I[x, z] and z /∈ I[x, y] otherwise x, y, z induces an
asteroidal triple.

Theorem 7. Let G be an AT-free graph. Every admissible vertex in G has at least one admissible neighbour.



Proof. Suppose not, then there exists a vertex x admissible in G such that for all y ∈ N(x), there exists a, b
where y ∈ I[a, b]. Fix a y ∈ N(x) and induced paths Pya, Pyb to witness y ∈ I[a, b]. Then x is adjacent to
at least one of a and b otherwise x ∈ I[a, b]. This can happen in two cases, either x lies on one of Pya, Pyb
or it does not. Suppose without loss of generality, that x is on Pya as Pya = Pyx · Pxa, since y ∈ N(x), this
gives Pya = xy ·Pxa. If |Pxa| > 1, then Pxa and xy ·Pyb are two paths that witness x ∈ I[a, b]. This is true
because b misses Pya by construction and thus bx /∈ E. Therefore |Pxa| = 1 and a ∈ N(x). Suppose on the
other hand that x does not lie on neither Pya nor Pyb, then xy · Pya and xy · Pyb would witness x ∈ I[a, b],
thus at least one of a, b is adjacent to x.

The idea of the proof is to show that for every non-admissible neighbour of x, we must introduce a
new vertex that will eventually be a neighbour of x itself, by finiteness of N(x), this cannot keep going.
Suppose when we started with y ∈ I[a, b], all three vertices a, b, y ∈ N(x). Since y ∈ I[a, b], by Fact 2.2
above and our assumption, a is non-admissible and a ∈ I[α, β] where at most one of α, β is b or y. Without
loss of generality suppose α ∈ {b, y}, then β is a new introduced vertex. Similarly for b, by assumption
b is non-admissible and b ∈ I[γ, δ] where at most of the these endpoints is either a or y. Without loss of
generality suppose it is γ ∈ {a, y}, then δ is a new introduced vertex. Using the same argument above, at
least of β and δ must be adjacent to x, otherwise we will get x ∈ I[β, δ]. We will unpack this idea case by
case below.

Without loss of generality, suppose first that a ∈ N(x) only. Then by assumption a is non-admissible
and there exists two vertices c, d such that a ∈ I[c, d]. If both c, d are different from b, y then x must be
adjacent to at least one of them and we thus repeat the same argument. Suppose then that one of c, d is either
b or y. Notice that it cannot be both because otherwise a, b, y would induce an asteroidal triple (Fact 2.2).

(i). Suppose c = b. Then y ∈ I[a, b] with Pya, Pyb and a ∈ I[b, d] with Qab, Qad. Notice that y must hit
every ab path (Qab in particular) otherwise a, b, y induces an asteroidal triple. Notice further that a ∈ I[b, d]
implies that at least one of b, d ∈ N(x), otherwise once again x ∈ I[b, d]. Without loss of generality,
suppose b ∈ N(x), we repeat the same argument. By assumption b is not admissible, thus there exists s, t
such that b ∈ [s, t]. One of s, t must be a neighbour of x. Since G is finite, and N(x) is finite, by repeating
this argument, at some point, we must re-use neighbours of x that we have already introduced.

(ii). Suppose then that c = y. Then y ∈ I[a, b] with Pya, Pyb and a ∈ I[y, d] with Qay, Qad, and both
a, y ∈ N(x). In this case, notice that d misses Pyb, otherwise a, y, d would induce an asteroidal triple.
Similarly b misses Qad, otherwise a, b, y induces an asteroidal triple. Thus using paths Pxd = xa ·Qad and
Pxb = xy · Pyb, we get that x ∈ I[b, d] unless one of these interval endpoints is adjacent to x. We then
repeat the same argument, where every interval introduces a new neighbour of x that is not admissible by
assumption; N(x) is finite, and thus at least one neighbour of x must be admissible.

Corollary 2.3. Every AT-free graph has at least 3 admissible vertices or is a clique.

Proof. Clearly every AT-free graph has at least two admissible vertices (unless |V | = 1), it suffices to use
two LexBFS sweeps on G to find them. Using Theorem 7, each one of these two admissible vertices has an
admissible neighbour. Thus every G with large enough diameter has at least four admissible vertices, with
the exception of AT-free graphs that have diameter two.

This corollary is reminiscent of the classical property on chordal graphs by Dirac:

Theorem 8. [11] Every chordal graph that is not a clique has at least two non-adjacent simplicial vertices.

We next give a few properties on AT-free graphs by looking at the underlying convex geometry and
antimatroid structure of this graph class. For the remainder of this work, let G(V,E) be an AT-free graph.
We begin with a result in [4], where Chang, Kloks, and Wang showed that the 2p-convexity is a convex
geometry on AT-free graphs.



Theorem 9. [4] The 2p-convexity yields a convex geometry if and only if G is AT-free.

We independently proved that AT-free graphs admit an underlying antimatroid, however the advantage
of Theorem 9 is that they presented a convex geometry that explicitly described the betweenness relation
that holds for this graph class. Whereas our result just follows now from Theorem 2. Using this convex
geometry on AT-free graphs, we prove a De Bruijn-Erdős type theorem for AT-free graphs.

A De Bruijn-Erdős Type Theorem for AT-free Graphs. A classical result of De Bruijn and Erdős shows
that any given n points are either collinear or determine at least n distinct lines in the plane. Chen and
Chvátal conjectured that a generalization of this result in all metric spaces, with appropriate definitions of
lines, holds as well. We show that the Chen-Chvátal generalization holds for AT-free graphs, where lines
are defined using the notion of betweenness that rises from the 2p-convexity.

The Sylverster-Gallai theorem asserts that any set of n points is either collinear or there is a line that
goes through exactly two distinct points. One of the corollaries of this result is the De Bruijn-Erdős theorem;
which asserts that any n collinear points in the plane determine at least n distinct lines [13]. This in fact
holds in settings where distances and angles are not needed; just the notions of lines and points on lines in
ordered geometries.

Recall that betweenness is a ternary relation that relates the “placement” of a point x between two other
points p and q. We write [pxq] to say that x lies between p and q, and write (E,B) to denote the set system
defined on the ground set E of points, and a betweenness relation B defined on the elements of E. In this
setting, one can define a line pq between any two distinct points p and q as follows:

pq = {p, q} ∪ {x : [xpq] ∈ B ∨ [pxq] ∈ B ∨ [pqx] ∈ B} (2)

Thus the definition of a line varies with every notion of betweenness. For instance, in Euclidean space,
betweenness translates naturally to the Euclidean metric:

[pxq] ⇐⇒ p, q, x are distinct points and dist(p, x) + dist(x, q) = dist(p, q),

However in arbitrary spaces, metric betweenness leads to other types of lines. In fact, it can lead to families
of lines with different behaviour. For instance, a line can be properly contained in another line, as shown in
the example below [5]. Given

dist(u, v) = dist(v, x) = dist(x, y) = dist(y, z) = dist(z, u) = 1

dist(u, x) = dist(v, y) = dist(x, z) = dist(y, u) = dist(z, v) = 2,

the line vy = {v, x, y} is properly contained in the line xy = {v, x, y, z}.
Chen and Chvátal conjecture in [5] the following

Conjecture 2.4. Every metric space on n ≥ 2 points either has at least n distinct lines or has a line that
contains all the points.

Clearly, the definition of a line varies with that of betweenness. Let’s call a line universal if it contains
all the points. And let’s say that a metric space satisfies the De Bruijn-Erdős property if it either has a
universal line or at least n distinct lines. Conjecture 2.4 has been proven for special cases where the notion
of betweenness is well understood. In particular, it was shown that the conjecture holds for posets and
chordal graphs, and other graph classes, see for instance [1, 2, 7]. For many of these cases, the notion of
betweenness rises naturally from an underlying structure of the graph class or the combinatorial objects.
In particular, chordal graphs admit a monophonic convexity, and it is indeed what is used to define the



betweenness and the lines used to prove the conjecture in [2]. Posets admit a double shelling antimatroid,
whose corresponding convex geometry is precisely captured by the betweenness used to prove the Chen-
Chvátal conjecture in [1]. We discuss these two examples in more detail below.

For chordal graphs, a convex set contains all the vertices in a chordless ac path. That is all the vertices
b between a and c. In the poset, every b between a and c in the poset is also in the convex set. Thus in both
cases, we have the following

S is convex if ∀a, c ∈ S, b ∈ I(a, c) =⇒ b ∈ S

And to use the line notation above, we write [abc] for both b is in a chordless ac path in a the chordal graph
G, or b is comparable to both a, c in the poset P . Using the line definition in (1), Beaudou et al. proved in [2]
that the Chen-Chvátal conjecture holds for all metric spaces induced by connected chordal graphs. This line
definition makes sense for this graphs since it uses its underlying convex geometry structure. Similarly,
in [1], Aboulker et al. proved that posets also satisfy the Chen-Chvátal conjecture for the betweenness that
rises from the double shelling antimatroid, where a line is defined as:

ac = {a, c, } ∪ {b : b is comparable to both a and c}

Once again, this makes sense for posets since the notion of line rises naturally from the underlying convex
geometry.

using the convex geometry and strict betweenness defined by AT-free graphs, the definition of the line
in (1) reduces to

xy = {x, y} ∪ {z : [xzy]}
= {x, y} ∪ {z : z ∈ IG(x, y)}

We give a short proof that AT-free graphs have the De Bruijn-Erdős property.

Theorem 10. A connected AT-free graph on n ≥ 2 vertices either induces at least n distinct lines or has a
universal line.

Proof. Let’s call a line trivial if it only contains its end points, i.e., xy = {x, y}. We begin by a simple
remark: If G is AT-free graph on n vertices, then unless n = 2, G will never have a universal line. To
see this, it suffices to notice that for a line ab to be universal, it must contain all of V . However, for all
a′ ∈ N(a), b′ ∈ N(b), a′, b′ /∈ IG(a, b).

We first consider an extreme case: If G has no AT-free intervals, an induced cycle on five vertices for
instance, then G has roughly n2 lines. Indeed every pair of vertices defines a distinct line. And so G has(
n
2

)
≈ n2 lines. We in fact get more than n lines if n ≥ 3. Thus again for n = 2, the points are collinear.
let G be an arbitrary AT-free graph. For every vertex v ∈ V , and every neighbour u ∈ N(v), the pair

u, v defines a trivial line uv. Thus every graph has m trivial distinct lines, where m is the number of edges
of G. Since G is connected m ≥ n− 1. Thus we have l1, . . . , ln−1 distinct lines.

If G is a clique, then similar to the extreme case above, we get ≈ n2 lines. If G is not a clique, then
there exists a pair of vertices a, b such that ab /∈ E. Either IG(a, b) = ∅ or not. If IG(a, b) = ∅, then the line
ab is trivial and is distinct from all l1, . . . , ln−1 lines defined by the m edges, since ab /∈ E. If IG(a, b) 6= ∅,
then there exists vertex c between a and b and thus [acb], and ab ⊆ {a, b, c}, which is distinct from all
l1, . . . , ln−1 lines.

In all cases we get at least n lines.
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