
MNRAS 000, 1–8 (2015) Preprint 21 July 2020 Compiled using MNRAS LATEX style file v3.0

Closed Loop Predictive Control with Convolutional Neural Networks

Swanson, R.1? A. N. Other,2 Third Author2,3 and Fourth Author3
1Royal Astronomical Society, Burlington House, Piccadilly, London W1J 0BQ, UK
2Department, Institution, Street Address, City Postal Code, Country
3Another Department, Different Institution, Street Address, City Postal Code, Country

Accepted XXX. Received YYY; in original form ZZZ

ABSTRACT
Predictive wavefront control is an important and quickly developing area of adaptive optics
(AO). Through the prediction of futurewavefront effectswe can undo inherent AO system servo
lag caused by the measurement, computation, and application of the wavefront correction. This
lag can impact the final delivered science image, including reduced contrast, and inhibits our
ability to reliably use faint guidestars. We summarize here a method for predictive control
based on convolutional long-short term memory neural networks. Unlike previous methods
which showed results based on offline images, we demonstrate their closed loop performance
in simulation and show that it can both reduce effects induced by servo lag and push the
faint end of reliable control with natural guidestars, improving strehl performance compared
to classical methods by over 55% for magnitude 16 guidestars on an 8-meter telescope. We
further demonstrate its performance on our experimental bench, showing the first experimental
results for our method. Finally, we discuss the requirements and difficulties of implementing
on large telescopes.

Key words: keyword1 – keyword2 – keyword3

1 INTRODUCTION

1.1 Opening Introductions

• talk about general status of AO systems and their GENERAL
limitations (i.e. sky coverage, servo lag, i.e. things AO systems
encounter generally that we are trying to overcome)
• CNNs can provide a unique approach at de-noising systems and

extrapolation (i.e. prediction), so has potential to improve aspects
of an AO system in a general by exploiting these two things
• Some work with CNNs in the past are ...; they did
• In this paper we apply this type of CNN, with the aims of

testing the de-noising and extrapolation suppositions made above
• Consider capping off by summarizing what each section will

tackle (this is a theme in these papers sometimes) end the paragraph
by saying we also discuss the future of such an approach and its
application for both real life systems and predictive control for high
order systems with bright magnitude guidestars

1.2 Neural Networks in Adaptive Optics

Neural networks, and more recently deep convolutional neural net-
works (CNNs) are now well established as an effective and robust
tool for many image processing problems (LeCun et al. (2015)).
Their ability to learn complex and robust functions largely comes
from the rich features that can be learned with a combination of

? E-mail: mn@ras.org.uk (KTS)

using many 2D convolutions and having a very large set of train-
ing data to learn from. These methods have been adopted in many
areas of scientific imaging, including the medical and astronomical
sciences (e.g., Ronneberger et al. (2015); Dieleman et al. (2015)).
However, while their ability to analyze, process, and improve astro-
nomical image data have been well shown, their ability to improve
the instrumentation tools themselves has been relatively overlooked.

One successful application of neural networks astronomical
instrumentation has been in the field of adaptive optics, where tra-
ditional densely-connected neural networkswere applied to improve
on the problem of off-axis anisoplanatism (Gendron et al. (2011);
Osborn et al. (2012)). In this work the authors show a success-
ful application of their model in an on-sky environment by train-
ing on wavefront sensor slope measurements. However, because
their networks lacked spatial and temporal reasoning capabilities,
they weren’t able to leverage information across neighbouring slope
measurements or learn persistent patterns across wavefront mea-
surements.

1.3 Generative Adversarial Networks

Generative Adversarial Networks (GANs; Goodfellow et al. (2014))
are a more recent development in training neural networks which
have greatly advanced our methods for generating realistic looking
images. The key to their success is training two networks simultane-
ously: the generative networkwhich learns to create realistic images,
and the discriminator which learns do distinguish between real and
fake images. As the two networks train, they compete against each

© 2015 The Authors

2 Swanson et al.

other which helps the generator learn to create more realistic images
that can fool the discriminator.

Typically this technique is employed to generate new, previ-
ously unseen, images either from a random initialization (Goodfel-
low et al. (2014)) or conditioned on some prior data (Liang et al.
(2017)). Similarly, GANs have also found success in re-creating
images based on the style of another (Zhu et al. (2017)), or to create
more realistic training data for real-life systems (Shrivastava et al.
(2017)). Here we use GANs in a novel way to facilitate training a
closed loop integrator (which can be sensitive to new types of in-
put), the discriminator acts as a prior on the output of the predictive
network be statistically similar to the training data. Therefore when
the loop is closed, and predictions from the network are fed back
to the network as input, the input is still similar to the training data
that it learned on.

1.4 Long-Short Term Memory Networks

One area where CNNs prove less efficient is for temporally corre-
lated data. While it is possible to incorporate time dependencies
in our data by passing a large batch of data through the network
at once, this proves to be much more computationally expensive
and therefore not ideal for applications which are run at very high
speeds.

Recurrent neural networks, and later improved by Long Short
Term Networks (LSTM; Hochreiter & Schmidhuber (1997)), were
created to solve this weakness in traditional neural networks by
passing information from the last data point to the next in time.
Furthermore, in the case of LSTMs, the network creates and holds
a hidden state at each layer in the network which is updated as new
data is passed through the network. This enables the network to
pick out features and patterns over time which it finds relevant and
produce better results as more is passed through the network; this is
accomplished by learning functions which choose what parts of the
new data to add to the state, and which information can be forgotten.
For a more detailed and illustrated description, see (Olah (2015)).

In cases where the data is both spatially and temporally cor-
related, such as images, these methods can be further improved by
using convolutional filters (Xingjian et al. (2015)) such as those
found in a typical CNN. These types of networks are aptly named
convolutional LSTM networks and have been successfully used in
a variety of cases such as video and motion prediction (Finn et al.
(2016); Lotter et al. (2016)) and are therefore a powerful tool for an-
alyzing atmospheric phase perturbations which have strong spatial
features and are highly temporally correlated.

2 DEEP PREDICTIVE CONTROL

2.1 Network Description

Our network was designed with to exploit the natural spatial and
temporal structure found in atmospheric conditions while operating
as efficiently as possible to try to meet the high operating speed
of modern AO systems. To achieve these design goals we use a
densely connected convolutional neural network (CNN) operating
on pseudo-open-loop (POL) slopes as seen in Figure 1. Densely
connectedCNNs have been recently shown to learnmeaningful con-
volutional features while maintaining a smaller number of learned
parameters. The skip connection, which connects the input and out-
put of the network, reduces the complexity required of the network
output by requiring the network to only generate the small change

required between the input data and the future ground truth slopes.
We choose to do our inference on the slope data due to it being
the only available information from the atmospheric wavefront in
typical AO telemetry. The large reduction in spatial dimensionality
compared to full resolution atmosphere also reduces computational
complexity while preserving spatial and temporal relationships in
the data. This assumption holds true if a bijection between a wave-
front and its calculated slopes exists which we assume to be true for
this type of AO system.

As input, a set of x and y direction slopes are stacked and
passed through the network as an [Nx × Ny × 2] data point where
Nx,Ny are the number of lenslets in the x and y direction. Once
passed through the network, the output slopes can be converted into
commands with the pre-calibrated command matrix and applied
directly onto the DM.

While we have found that this network to be sufficient for
producing slopeswhich very accuratelymatch the ground truth data,
in practice the network was insufficient for closing an AO loop. This
is due to statistical differences in the distribution of data from the
input, ground truth, and network output slopes which resulted in a
network that performs very well for a short amount of time in closed
loop before diverging. As the loop is closed with the output from
our network, the new input to the network in subsequent iterations
of the loop will look less and less like the training data used to create
the network.

One solution would be to reduce the number of learnable
paramters of our network to avoid this overfitting to the ground
truth data. However, this in turn reduces the networks accuracy re-
sulting in very minor improvements over classical methods. As a
simple solution to this problemwe include an additional discrimina-
tive network and loss function as a prior to encourage the network to
output slopes which are close to the ground truth while statistically
resembling the input data. In this way the slopes in our closed loop
integrator will appear similar to the training data even if we are in
entirely new simulation environments.

The discriminative network takes a set of slopes as input and
attempts to discern whether those slopes were part of the original
training data set or a set of slopes produced by out network. We
then train both the predictive and discriminative networks simulta-
neously, forcing our predictive network to both predict the future
slopes while also fooling the discriminator while also training the
discriminator to better discern between the two. This game of cat
and mouse continues until we have reached a saddle point in our
loss function where the predictive network is as accurate as possible
while the discriminator can not reliably tell the two sets of input
apart.

The discriminative network, as shown in Figure 3, is a simple
series of strided convolutional layers which take the input slopes
and apply increasing numbers of convolutional filters at each layer
while halving the spatial resolution at each step. This results in a
final output from the convolutional layers of size [512× 1] which is
then fed into a fully connected layer which takes a learned, weighted
sum of the outputs to produce a single output value of 0 or 1. Here
an output of 0 means the network believes the input slopes were
produced by our predictive network while an output of 1 means the
network thinks it was from the original set of training data.

Each layer of the predictive and discriminative networks con-
tain a convolutional layer with 3×3 pixel filters, a batch norm layer,
and is activated with the PReLU non-linear activation layer (He
et al. (2015)). The PReLU activation function introduces a learned
parameterα at each layer allowing the network to adapt its activation

MNRAS 000, 1–8 (2015)

Deep Predictive Control 3
IN

PU
T

SL
O

PE
S

12
8

x
3

x
3

CO
N

V

12
8

x
3

x
3

CO
N

V

CO
N
CA

TE
N
AT

IO
N

12
8

x
3

x
3

CO
N

V

12
8

x
3

x
3

CO
N

V

CO
N
CA

TE
N
AT

IO
N

12
8

x
3

x
3

CO
N

V

CO
N
CA

TE
N
AT

IO
N

12
8

x
3

x
3

CO
N

V

12
8

x
3

x
3

CO
N

V

CO
N
CA

TE
N
AT

IO
N

12
8

x
3

x
3

CO
N

V

12
8

x
3

x
3

CO
N

V

CO
N
CA

TE
N
AT

IO
N

12
8

x
3

x
3

CO
N

V

CO
N
CA

TE
N
AT

IO
N

12
8

x
3

x
3

CO
N

V

12
8

x
3

x
3

CO
N

V

CO
N
CA

TE
N
AT

IO
N

12
8

x
3

x
3

CO
N

V

12
8

x
3

x
3

CO
N

V

CO
N
CA

TE
N
AT

IO
N

12
8

x
3

x
3

CO
N

V

CO
N
CA

TE
N
AT

IO
N

Dense Block

O
U

TP
U

T
SL

O
PE

S

AD
DI
TI
O
N

Figure 1. Overview of our predictive convolutional neural network. At each time step the latest 20 measured POL slopes are passed into the network which
predicts the upcoming slopes corresponding to those from two iterations forward in time. The network consists of three densely connected blocks wherein each
layer concatenates its output to the input channels of all future convolutional layers within its block. Each layer consists of 32, 3 × 3 convolutional filters which
are applied to all of its input channels after which a PreLU non-linear activation function is applied.

IN
PU

T
SL

O
PE

S
(T

)

12
8

x
3

x
3

CO
N

V-
LS

TM

O
U

TP
U

T
 S

LO
PE

S
(T

+1
)

1
x

3
x

3
CO

N
V-

LS
TM

12
8

x
3

x
3

CO
N

V-
LS

TM

1
x

3
x

3
CO

N
V-

LS
TM

O
U

TP
U

T
 S

LO
PE

S
(T

+2
)

…

Encoder State (T)

Predictor State (T)

Encoder State (T-1)

Predictor State (T-1)

Encoder State (T+1)

Predictor State (T+1)

…

Figure 2.Overview of our predictive convolutional LSTM network. At each
time step the current POL slopes and previous network states are passed
into the network which predicts the upcoming slopes corresponding to those
from two iterations forward in time. A single step of the LSTM network
consists of two convolutional LSTM blocks, the encoder which takes a set
of input slopes and convolves them with 128 pre-trained filters, outputting
an encoded set of features and a state for the given iteration. Similarly, the
predictor layer takes the encoded features from the encoder layer and predicts
the next slopes based on that and the previous predictor state. In addition to
each layers output, they also update their current state to be used in the next
iteration.

IN
PU

T
SL

O
PE

S

64
 x

 3
 x

 3
 C

O
N

V

12
8

x
3

x
3

CO
N

V

25
6

x
3

x
3

CO
N

V

51
2

x
3

x
3

CO
N

V

FU
LL

Y
CO

N
N

EC
TE

D

O
U

TP
U

T
LA

BE
L

Ba
tc

h
N

or
m

al
iza

tio
n

Ba
tc

h
N

or
m

al
iza

tio
n

Ba
tc

h
N

or
m

al
iza

tio
n

Ba
tc

h
N

or
m

al
iza

tio
n

Figure 3. Overview of the discriminate (adversarial) network. During train-
ing this network attempts to label an input set of slopes as either "real" or
"fake". Here "fake" refers to slopes output from our predictive network and
"real" slopes refer to those passed into the network during training. Simulta-
neously, our networkmust learn to trick this network into believing its output
is "real". This adversarial learning leads our network to output slopes which
it would also recognize as input, allowing our network to act as a stable AO
controller. The network itself consists of four 3×3 convolutional layers each
an increasing number of filters. The final layer is a fully connected layer
which maps the previous layers output to a single scalar value, 0 for "fake"
or 1 for "real".

functions to the data during training but is fixed during evaluation.
More formally it can be described as,

f (yi) =

{
yi if yi ≥ 0
αi yi if yi < 0

(1)

where yi is the input channel of the ith layer of the network
and αi is the learned slope of its non-linear activation. While the
discriminative network increases the training complexity, it is not
required during inference after the weights of the network are fixed
and therefore has no impact on the run-time of the final model.

3 TRAINING

3.1 Effect of Adversarial Prior

3.2 prioreffect

As previously described, we use an additional adversarial prior to
train our generative networks.

3.3 Simulation Settings

For both training and testing we simulate the Gemini telescope; an
8-metre class telescope with a 16×16 lenslet array operating in POL
at 800 Hz with one additional frame of servo lag. We operated the
AO with an R-band natural guide star, three layer atmosphere, and
K-band science camera over a wide range of NGS magnitudes. All
simulations were implemented and run using the OOMAO adaptive
optics simulation software package Conan & Correia (2014).

To generate training data 20,000 independent simulations were
run for 500 loop iterations each. For better sampling of possible
simulation settings we randomly sample the r0, wind speed, and
direction from normal distributions, and uniformly sample an NGS
magnitude between 8 and 16 for each simulation. This exposes
our network to a wide variety of data during training, helping it
generalize for all simulation parameters, avoid overfitting to cer-
tain conditions, and therefore work suitably well under any set of
conditions.

At each simulation time step t we save the current frame-
delayed POL slopes, s(t), computed from the classical integrator
and the current ground-truth “best fit” slopes s∗(t), computed from
the true atmosphere projected onto the DM. Given the current atmo-

MNRAS 000, 1–8 (2015)

4 Swanson et al.

CUMULATIVE POL
SLOPES

CURRENT
RESIDUAL SLOPES

CURRENT POL
SLOPES

PREVIOUS POL
SLOPES

PREDICTIVE
NETWORK

PREDICTED
SLOPES

COMMAND
MATRIX

DM COMMANDS

Figure 4. One iteration of our simulation when applying our predictive control algorithm. First, the POL slopes are calculated as usual. Those slopes are then
passed to our learned predictive network along, with a fixed number of previous POL slopes, to predict the corrected slopes to be applied at the current iteration.
To generate the accompanying mirror commands, we multiply the corrected slopes with the previously calibrated DM command matrix, resulting in the slopes
to be applied to the DM.

Simulation Parameters Values

Telescope

Diameter 8 m
Sampling Frequency 800 Hz

Frame Delay 2 Frames
WFS Order 16 × 16

WFS Readout Noise ≈ 0e−
DM Order 17 × 17
Pupil Shape Gemini Pupil

Three Layer
Atmosphere

r0 N(0.15, 0.02) cm
Layers 3

Altitudes
0 km
4 km
10 km

Fractional r0

0.7
0.25
0.05

Wind Speeds
N(5, 2.5) km/s
N(10, 5) km/s
N(25, 10) km/s

Wind Directions [0, 2π) rad

Science

Science Camera Band K
NGS Band R

NGS Magnitude [8, 16]
POL Gain 0.3

Table 1. Simulation parameters used for training our neural networks.

spheric phaseΦ(t), as well as the command matrix M and influence
function F of our calibrated DM, this can easily be calculated as,

s∗(t) = −
1
2

M−1
(
F−1
Φ(t)

)
(2)

These two sets of data, s and s∗, then represent our input and
target pairs during training. From each simulation we save 5 evenly
spaced sets of 50 continuous time steps, ignoring the initial 100
time steps to remove any data generated while the loop wasn’t fully
closed, for a total set of 100,000 training pairs. Please refer to Table 1
for further details.

3.4 Training

During trainingwe take 20 sequential iterations of noisy input slopes
s from time t to t + 20 and similarly, the ground truth slopes s∗ for
time t + 22. The noisy slopes are concatenated and passed through
the predictive network P which outputs a single set of slopes cor-

responding to time t + 22. From this output we compute the data
error term as the `1 loss between P(s) and s∗,

LD = | |P(s) − s∗ | |1 (3)

As described in Section e also include an adversarial loss to
impose a prior on the network outputs to be as similar as possible to
the training data. This takes the form of a binary Cross-Entropy loss
function, penalizing outputs from the predictive network which are
not labeled by the discriminative network D as the training data,

LA = −log (D (P (s))) . (4)

At each training step the total loss of our predictive network is
then,

LP = LP + γLD = | |P(s) − s∗ | |1 − γlog (D (P (s))) (5)

where γ weights the importance of the two loss terms. By
increasing the value of γ we put higher weight on the adversarial
loss and, in turn, decrease the networks power to perfectly recreate
the ground truth data. The weighting is therefore crucial for finding
the appropriate balance between the two terms. Based on the results
of our experiments we find that a value of γ = 5 works best and is
used throughout this work.

Simultaneous to the training of our predictive network, P, we
update the descriminative network at each step based on the current
weights of P, θP . Similar to LD ,D must maximize the likelihood
that it labels both the input training data and the output ofP correctly
which can be succinctly described by,

min
θP

max
θD

E
[
log

(
PθP (s)

)]
+ E

[
log

(
1 − DθD (s)

)]
(6)

Our network was coded and trained using the Tensorflow ma-
chine learning software package. All optimizations were performed
with a batch size of 32 using the Adam optimizer (Kingma & Ba
(2014)) with an initial learning rate of 1e−4. The Adam optimizer
is widely regarded as the current best method for optimizing deep
neural networks, due in large part to its ability to tune the learning
rate for each variable individually, and proved to work well in our
experiments.

4 RESULTS

4.1 Testing

After training, we tested our network by using its output to close the
loop in 500 additional simulations. Each simulation was randomly
initialized with the same range of parameter values used for the

MNRAS 000, 1–8 (2015)

subsec:netdescription#,.w

Deep Predictive Control 5

Figure 5. Closed loop performance of our network compared to a classical
integrator as the NGS magnitude is varied. Our network shows considerable
performance increase for faint NGS, but continues to show improvements
even under ideal NGS conditions.

Classic (86.05% Strehl Ratio)
Ours (Dense) (86.36% Strehl Ratio)
Ours (LSTM) (86.81% Strehl Ratio)

Classic (41.41% Strehl Ratio)
Ours (Dense) (66.34% Strehl Ratio)
Ours (LSTM) (67.91% Strehl Ratio)

Figure 6. Residual Wavefront Analysis: Example residual measurements
over the course of a simulation comparing our predictive control with a
classical integrator for a magnitude 8 (top) and magnitude 16 (bottom)
NGS. Our network begins predicting after 100 iterations (indicated with a
dashed veritcal line) and immediately shows improvements over the classical
method. Strehl ratio values are included in the legend parenthesis.

training simulations. The one exception being we run the test simu-
lations for 1,000 time steps to demonstrate their ability to learn and
operate over much larger time sequences than those used to train
the network.

Because our network was trained only on converged, closed
loop data, we use the classical POL integrator for the first 70 time
steps before using the output from our network to close the loop.
However, to initialize the state of the network we pass the computed
slopes through the network starting from the fiftieth iteration.

To compare the performance of our network with the classi-
cal method, we ran the same 500 simulations with both methods

Figure 7. Closed loop performance of our network compared to a classical
integrator as the wind speed is varied. While holding all other simulation
variables constant, we increase the r0 from 10 to 20cm to see its impact on
Strehl ratio. Our network is better able to cope with very low values of r0
by taking into account a history of previous slopes.

Figure 8. Closed loop performance of our network compared to a classical
integrator as the r0 is varied. While holding all other variables constant,
we increase the wind speed by up to a factor of three, to show how both
integrators are affected by increasing winds.

initialized with identical simulation parameters. In this way we can
directly compare their performance for each simulation in addition
to the aggregate performance across all simulations.

4.2 Results

In Figure 5 we show the average Strehl ratio performance for both
our method and the classical POL integrator. Our method clearly
improves the overall Strehl ratio across all star magnitudes; not
only at the faint end where noise dominates and its effects are most
significant but also for bright sources where servo-lag and aliasing
are the largest sources of non-fitting related error.

Figure 6 shows the the residual wavefront error over time for
a magnitude 8 and 16 NGS simulation using both integrators. Our
model immediately improves the residual variance after the neces-
sary burn-in period for the closed loop integrator to reach a relatively
steady-state (indicated with a dashed vertical line). These improve-
ments are further increased as the seeing conditions become worse
by either increasing wind speeds or decreased r0 of the system. Fig-
ure 7 compares our method with the classical integrator as the wind
speed increases for all three atmospheric layers while r0 is held con-
stant. For all NGS magnitudes and windspeeds our method shows
improvements over the classical method, with the performance gap
increasing as the winds grow stronger, and for high wind speeds

MNRAS 000, 1–8 (2015)

6 Swanson et al.

our method improves the quality of our seeing by the same factor
as a decrease of 2 NGS magnitudes. Similarly, Figure 8 shows the
performance of the two methods as the r0 varies when wind speed
and direction are held constant. Again, we see that at nearly ideal
seeing conditions ourmethod shows some strehl ratio improvements
with the performance gap increasing as the seeing becomes worse
at lower values of r0.

4.3 Frequency Analysis

To better understand the performance gains of our method, we in-
vestigate the average frequency content of the residual atmospheric
wavefront over the course of a simulation. At each time step we cal-
culate the power spectral density (PSD) of the residual wavefront,
applying a Hamming filter to account for high frequencies caused
by the telescope pupil, and then average over the entire simulation.

Figure 10 shows two example comparison plot for extended
simulations over 10 seconds with NGS magnitude of 8 and 16. The
ratio map, shown on the right, is the ratio between the classical
method and ours. While the two PSDs may appear similar, the ratio
image shows at which 2D spatial frequencies the twomethods differ.
Of note, our network improves smearing of the central PSD core
even at low magnitudes, indicating a reduction in servo-lag and
therefore an improvement in contrast. At higher magnitudes our
method improves across all frequencies indicating an improvement
in noise suppression and aliasing in addition to servo-lag.

5 CONCLUSIONS

5.1 Hardware Implementation

While we have proven our method in simulation, the next step is to
show bench results to verify our claims. As is often the case when
moving from simulation to hardware many issues may arise due
to differences in the data. However, due to the simplicity and low
spatial dimensionality of the data required by our method, we do
not forsee substantial issues beyond potentially acquiring additional
training data from our hardware.

However, looking beyond simple hardware verification towards
real-time application more work will be required to incorporate
these types of methods into AO pipelines. Due to the high speeds
at which they are operated, careful consideration will be required to
achieve real-time speeds. Currently, our method runs on the order
of 200Hz without any GPU code optimization. Luckily, there is a
growing body of work dedicated to optimizing trained networks He
et al. (2017), more efficient compilation of hardware instructions1,
and custom hardware for very high-speed inference of deep learning
models Lacey et al. (2016), which are quickly accelerating the real-
time operating speeds for these types of networks. Other changes to
the network, such as adjusting the number of layers, filters, or dense
blocks can also be made to reach the run-time budget for a given
project.

1 e.g., NVidia’s TensorRT https://developer.nvidia.com/

tensorrt

ACKNOWLEDGEMENTS

The Acknowledgements section is not numbered. Here you can
thank helpful colleagues, acknowledge funding agencies, telescopes
and facilities used etc. Try to keep it short.

REFERENCES

Conan R., Correia C., 2014, in Adaptive optics systems IV. p. 91486C
Dieleman S., Willett K. W., Dambre J., 2015, Monthly notices of the royal

astronomical society, 450, 1441
Finn C., Goodfellow I., Levine S., 2016, in Advances in neural information

processing systems. pp 64–72
Gendron E., et al., 2011, Astronomy & Astrophysics, 529, L2
Goodfellow I., Pouget-Abadie J., Mirza M., Xu B., Warde-Farley D., Ozair

S., Courville A., Bengio Y., 2014, in Advances in neural information
processing systems. pp 2672–2680

He K., Zhang X., Ren S., Sun J., 2015, in Proceedings of the IEEE interna-
tional conference on computer vision. pp 1026–1034

He Y., Zhang X., Sun J., 2017, in Proceedings of the IEEE International
Conference on Computer Vision. pp 1389–1397

Hochreiter S., Schmidhuber J., 1997, Neural computation, 9, 1735
Kingma D. P., Ba J., 2014, arXiv preprint arXiv:1412.6980
Lacey G., Taylor G. W., Areibi S., 2016, arXiv preprint arXiv:1602.04283
LeCun Y., Bengio Y., Hinton G., 2015, nature, 521, 436
Liang X., Lee L., Dai W., Xing E. P., 2017, in Proceedings of the IEEE

International Conference on Computer Vision. pp 1744–1752
Lotter W., Kreiman G., Cox D., 2016, arXiv preprint arXiv:1605.08104
Olah C., 2015
Osborn J., Juez F. J. D. C., Guzman D., Butterley T., Myers R., Guesalaga

A., Laine J., 2012, Optics express, 20, 2420
Ronneberger O., Fischer P., Brox T., 2015, in International Conference on

Medical image computing and computer-assisted intervention. pp 234–
241

Shrivastava A., Pfister T., Tuzel O., Susskind J., Wang W., Webb R., 2017,
in Proceedings of the IEEE conference on computer vision and pattern
recognition. pp 2107–2116

Xingjian S., Chen Z., Wang H., Yeung D.-Y., WongW.-K., WooW.-c., 2015,
in Advances in neural information processing systems. pp 802–810

Zhu J.-Y., Park T., Isola P., Efros A. A., 2017, in Proceedings of the IEEE
international conference on computer vision. pp 2223–2232

MNRAS 000, 1–8 (2015)

https://developer.nvidia.com/tensorrt
https://developer.nvidia.com/tensorrt

Deep Predictive Control 7

(a) Classical PSD (85.7% Strehl Ratio) (b) Dense PSD (85.8% Strehl Ratio) (c) LSTM PSD (86.1% Strehl Ratio)

(d) Classical/Dense Ratio Image (e) Classical/LSTM Ratio Image (f) Dense/LSTM Ratio Image

Figure 9. Magnitude 8 Residual Wavefront Frequency Analysis: Log-scale power spectral density (PSD) plots (left, centre) and PSD ratio image (right)
of the residual wavefronts comparing our predictive method and the classical integrator over the DM control radius. Our method clearly shows improvements
near the PSD core, which are attributed to servo-lag, and near the edge of the control radius due to aliasing. At higher magnitudes we see suppression across
nearly all frequencies due to the network removing noise from the measurements which dominate in the faint regime.

APPENDIX A: TRAINING PSEUDO-CODE

Algorithm 1: Network Training Procedure
while Training do

/* Sample next batch of training data */

nextInput = nextBatch(trainingData)
nextGT = nextBatch(groundtruthData)

/* Get prediction with current network */

prediction = predictionNet(nextInput)

/* Get discriminator labels for both our

network output and the current

training data */

pLabel = discriminatorNet(prediction)
dLabel = discriminatorNet(nextInput)

/* Calculate mean squared error between

prediction and ground truth slopes as

well as its cross-entropy loss against

the "real" label */

pLoss = MSE(prediction, nextGT) + CEL(pLabel, ®1)
/* Calculate cross-entropy loss between

the network input and output and their

respective labels */

dLoss = CEL(pLabel, ®0) + CEL(dLabel, ®1)

/* Use the calculated loss functions to

update both networks */

discriminatorNet.backPropagate(dLoss)
predictionNet.backPropagate(pLoss)

end

MNRAS 000, 1–8 (2015)

8 Swanson et al.

(a) Classical PSD (42% Strehl Ratio) (b) Dense PSD (65% Strehl Ratio) (c) LSTM PSD (63% Strehl Ratio)

(d) Classical/Dense Ratio Image (e) Classical/LSTM Ratio Image (f) Dense/LSTM Ratio Image

Figure 10. Magnitude 16 Residual Wavefront Frequency Analysis: Log-scale power spectral density (PSD) plots (left, centre) and PSD ratio image (right)
of the residual wavefronts comparing our predictive method and the classical integrator over the DM control radius. Our method clearly shows improvements
near the PSD core, which are attributed to servo-lag, and near the edge of the control radius due to aliasing. At higher magnitudes we see suppression across
nearly all frequencies due to the network removing noise from the measurements which dominate in the faint regime.

This paper has been typeset from a TEX/LATEX file prepared by the author.

MNRAS 000, 1–8 (2015)

	Introduction
	Opening Introductions
	Neural Networks in Adaptive Optics
	Generative Adversarial Networks
	Long-Short Term Memory Networks

	Deep Predictive Control
	Network Description

	Training
	Effect of Adversarial Prior
	prioreffect
	Simulation Settings
	Training

	Results
	Testing
	Results
	Frequency Analysis

	Conclusions
	Hardware Implementation

	Training Pseudo-Code

