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Abstract

In this paper we consider the problem of computing and
removing interreflections in photographs of real scenes. To-
wards this end, we introduce the problemiferse light

transport—given a photograph of an unknown scene, de- b’ EI b’ EI b’ El
compose it into a sum of-bounce images, where each im-
age records the contribution of light that bounces exactly Il 12 13

n times before reaching the camera. We prove the exis-
tence of a set ointerreflection cancelation operatotsat  Figure 1: An n-bounce imagd™ records the light that bounces
enable computing eacirbounce image by multiplying the  exactlyn times before reaching the camera.

photograph by a matrix. This matrix is derived from a set
of “impulse images” obtained by probing the scene with a

narrow beam of light. The operators work under unknown iy, ysion of light that bounces exactiytimes before reach-
and arbitrary illumination, and exist for scenes that have ing the camera (Figure 1). For instandé s the image we

arbitrary spatially-varying BRDFs. We derive a closed- \yq|q capture if it were possible to block all indirect illu-
form expression for these operators in the Lambertian casgyination from reaching the camera, while the infinite sum
and present experiments with textured and untextured Lam-y2 3 | represents the total contribution iofdirect
bertian scenes that confirm our theory’s predictions. illumination. While we can capture the composite image
1 Introduction g;sing a camera, the individuah*bounce” images are not
T . ] irectly measurable.
Modeling light transport the propagation of light In this paper we prove the existence of a set of linear
through a known 3D environment, is a well-studied prob- operators that compute the entire sequencepbunce im-
lem in computer graphics. However, the inverse light trans- ages in a photograph of an unknown scene captured under
port problem—using photos of an unknown environment to ynknown illumination. These operators, which we dal
infer how light propagates through it—is wide open. terreflection cancellation operatarexist under very gen-
Modeling inverse light transport enables reasoning abouterg| conditions—the scene can have arbitrary shape and ar-
shadows and interreflections—two major unsolved problemsbitrary BRDF and be illuminated by an arbitrary illumina-
in computer vision. Aside from the interesting theoreti- tjon field. Moreover, we show that in the special case of
cal questions of what about these effects can be inferredscenes with Lambertian reflectance, we can compute these
from photographs, understanding shadows and interreflecpperators by first collecting a sequence of images in which
tions has major practical importance, as they can accounthe scene is “probed” with a narrow beam of light that slides
for a significant percentage of light in a photograph. Model- gyer the surface. We emphasize that our procedure requires
ing inverse light transport can greatly expand the applicabil- acquiringmultipleimages of a scene as a preprocessing step
ity of a host of computer vision techniques, i.e., photometric jn order to cancel interreflected light from any new pho-
stereo, shape from shading, BRDF measurement, etc., thajograph. The cancellation process is performed simply by
are otherwise limited to convex objects that do not inter- mytiplying the new photograph by a matrix derived from
reflect light or cast shadows onto themselves. the pre-acquired images.
The intensities recorded in an image are the result of By removing the effects of interreflections, these opera-
a complex sequence of reflections and interreflections, asors can be used to convert photographs into a form more
light emitted from a source will bounce off of the scene’s amenable to processing using existing vision algorithms,
surfaces one or more times before it reaches the camera. IRjnce many techniques do not account for interreflections.
*Part of this research was conducted while the author was servingasa 1€chniques for simulating interreflections, and other
Visiting Scholar at Microsoft Research Asia. light transport effects are well-known in the graphics com-

theory, therefore, every image can be thought of as an infi-
nite sum,J] = I' 4+ 12+ I3+ ..., wherel™ records the con-




munity (e.g., work on ray tracing [1, 2] and radiosity [1, 3]), 2 Inverting Light Transport

and have been studied in the vision Community as well The appearance of a scene can be described as a ||ght
[4, 5]. However, relatively little is known about the in-  field L, (wY), representing radiance as a function of out-
verse problem of modeling the effects of interreflections, going raywY [17, 18, 19]. While various ray representa-
in images of real scenes. A number of authors [6, 7, 8] tions are possib|e, we Specify a ra& by its 3D point of
have recently proposed methods to capturddheardlight ~ origin x and direction fromx to another pointy. We re-
transport function from numerous photographs taken understrict x to lie on scene surfaces. Since the set of rays that
different iIIuminationS, ImpIICItIy taklng into account the touch the scene is 4D (assuming the scene is Composed of
glObal effects of interreflections, shadows, sub-surface SCat'a finite set of 2D Surfaces), we may speak of a ||ght field as
ting, etc. Yuet al. [9] and Machideet al. [10] describen- being a 4D function. To simplify our analysis, we consider
verse gIObaI i”uminationeChniqueS that model diffuse in- ||ght of a Sing|e Wave|engtﬁ_$cene illumination may also
terreflections to recover diffuse and specular material prop-pe described by a light field,,, (wX,) describing the light
erties from photographs. In both methods, the geometry andemitted from source points’ to surface points.. We use
lighting distribution is assumed to be known a priori. None the termoutgoing light fieldandincident light fieldto refer
of these methods provides a means, however, for measurig L, andL;,,, respectively.
ing and analyzing the effects of interreflections, inanimage  An outgoing light fieldL,. is formed by light from one
where the scene’s shape and the incoming light's distribu- or more emitters that hits objects in the scene and gets re-
tion are both unknown. flected. Some of this reflected light hits other objects, which
Although the focus of our work is cancelling interreflec- in turn hits other objects, and the process continues until an
tions, it is closely related to the shape-from-interreflections, €quilibrium is reached. We can therefore thinklof,, as
problem. This problem has received very limited attention, P€ing composed of two components: light that has bounced
focusing on the case of Lambertian scenes [11, 12] and@ Single time off of a scene pointitect llumination), and
of color bleeding effects between two differently-colored light that has bounced two or more timésdjrectillumina-
facets [13, 14, 15, 16]. Closest to our analysis is the inspir- ion), i.e.,
ing work of Nayaret al. [11], who demonstrated an iterative yy _ 7l y 2,3, y
photometric stereo algorithm that accounts for interreflec- Lour(w) = Lour (W) + Lou™ (3) @)
tions. Our analysis differs in a number of interesting ways The first component,! ,(w¥), is determined by the BRDF
from that work. Whereas [11] assumed uniform directional of x and the emitters that illuminate. The second com-
lighting, we place no restriction on the illumination field. ponent depends on interreflected light that kifsom other
Moreover, in contrast to the iterative approach in [11] for points in the scene. Eq. (1) can be expressed as an integral
estimating the light transport equations and analyzing inter- equation, known as thigght transport equatioror theren-
reflections, we derive closed-form expressions for the inter- dering equatiori20, 3] in the computer graphics literature:
reflection cancellation operators, that need be applied only
once to an image. On the other hand, a disadvantage of our L, (wY) = L}, (w¥) + / A(wY, W) Loyt (W )dx" .
approach compared to Nayar’s is that we require many more x! @)

inputimages to model the transport process. The functionA(wY, wX,) defines the proportion of irradi-
Our approach is based on two key insights. The first one,ance from pointx’ to x that gets transported as radiance

already known in the graphics literature, is that the forward towardsy. As such, it is a function of the scene’'s BRDF,

propagation of light can be described using linear equations.the relative visibility ofx andx’ and of light attenuation

We use this fact to show that the mapping from an arbitrary effects [20, 3f Whenx = x/, A(w¥,w¥,) is 0.

input image to each-bounce component can be expressed  If we assume that the scene is composed of a collection

as a matrix multiplication. The second is that in the case of of small planar facets and if we discretize the space of rays,

a Lambertian scene, we can compute this matrix from a seteq. (2) can be expressed in a discrete form [3, 11] as

of images in which an individual scene point is illuminated

by a narrow beam of light. Intuitively, each such image Loutli] = Ljli] + ) Ali, j1Louli] , 3

can be thought of as a “impulse response” that tells us how J

!ight fthat.hits a single scene point contributes to the indirect \ynare L, is a discrete light field represented by a set

illumination of the rest of the scene. of sampled raysL!,, is the corresponding-bounce light
We start by proving the existence of linear cancellation field, andA[i,i] = 0. Rewriting Eq. (3) as a matrix equation

operators that compute thebounce images under very Yields

general conditions (Section 2). For the case of Lambertian Low =L}y + ALy . (4)

scenes and a fixed camera viewpoint, WE,) then_ show how to 1Color may be treated by considering each wavelength separately.

construct these operators from a set of input images (Sec-  2romally, Eq. (2) interprets the light reflected ogrom external light

tion 3). Section 4 presents experimental results. sources as if it came directly from i.e.,x is treated as an emitter.




Eq. (4) defines, in a discrete form, how light is transported
through a scene. A direct solution is obtained by solving
Eq. (4) forL,,., obtaining [20, 3]

—1L1

out *

Lout = (I - A) (5)

This equation, well known in the graphics community,
shows that the global effects of light transport can be mod-
eled by a linear operatdl — A)~! that maps a light field
containing only direct illumination to a light field that takes
into account both direcndindirect illumination.

2.1 Cancelling Interreflections
Consider the following operator:

cler1_A. (6)
From Eq. (5), it follows that
L!,=C'Loy . 7

It is therefore possible to cancel the effects of interreflec-
tions in a light field by multiplying with a matrixCt. We
call C! aninterreflection cancellation operatoHenceC!

Applying the cancellation operator to an ISF yields

t = C't,, (10)
wheret} is the component of; due tol-bounce reflection.
By definingT! = [t] t1 ... t. ] we get the matrix equation

T! =C!'T (11)

and therefore

cl=1iT!. (12)
Eqg. (12) provides an alternative definition of the cancella-
tion operatorC! in terms of image quantities. Intuitively,
applying C! to a light field L,,; has the effect of first
computing the scene illumination field.{, = T 'L,.)
and then re-rendering the scene withl4oounce model
(LL,; = T'Ly,).

Note that whileT is measurableT! is generally not.
Hence, the derivations in this section provide only an ex-
istence proof foiIC!. Also note that Eq. (12) is valid only
whenT is invertible. C! is well-defined even whefT is

exists for general BRDFs, and is linear. Note that this result not invertible, however, since Egs. (6) and (7) always hold.

is a trivial consequence of the rendering equation—while

we do not believe the cancellation operator has been ex-2.2 N-bounce Light Fields

ploited previously in computer vision, its existence is im-

plicit in the derivations of forward light transport [20, 3, 11].
Even though Eq. (7) provides an existence proof of an

interreflection cancellation operatdz; is defined in terms

Suppose we wanted to compute the contribution of light
due to thesecondbounce of reflection. More precisely, sup-
pose light from the light source first hits a poipt then
bounces to poing, and then is reflected toward the cam-

of shape and BRDF quantities (contained in the entries of o 5 (see imagé? of Figure 1). How can we measure the

A) instead of image quantities. We now provide an inter-
pretation in terms of image quantities, as follows.
Consider emitting unit radiance along rayowards the

contribution of this light to the image intensity s pro-
jection? While this problem has a straightforward solution
when the scene’s shape, BRDF, and illumination are known

scene (e.g., using a laser beam or a projector). The resulting1] we are not aware of any solutions to this problem for

light field, which we denote;, captures the full transport of
light in response to ampulseillumination. We callt; an
Impulse Scatter Function (ISF) Now concatenate all the
ISFs into an ISF matri:

def

T 6t ... t] . 8)

Becaus€T is made up of ISFs, it is possible in principle to
measurerl in the laboratory using controlled illumination.
Although capturing a full dense set of ISFs would be ex-

unknown shapes and illuminations. Beyond removing inter-
reflections C! offers a simple way of solving this problem.
In particular, given a light field.,,; of the scene, the
portion of light due purely to interreflections is given by
Louwt — C'L,,:. Since the direct illumination has been
removed, we can treat the indirect illumination coming
from each visible pointp as if it were coming directly
from a light source located gb. Hence, the light field
C!(Lyut — C'Lyy) is the component di,,; that is due to

tremely time- and storage-intensive, previous authors havelh® sécond bounce of light. More generally, thié-order

explored the problem of capturing two-dimensional forms
of T[6, 7, 8].
Because light is linear, any light fiell,,; can be de-

scribed as a linear combination of ISFs, enabling applica-

tions such as synthetic relighting of scenes [6]. In particular,
we can express any outgoing light field as a function of the
illumination L;,, by

Lowt = TL;y, - 9)

3|t has also been referred to as theulse responsia [7].

interreflection cancellation operator and tivounce light
field are given by

déf )n—l

c" and
Ln

out

cl1-c!
déf CnLout ’

n . defines a light field due to the'" bounce of
light. This light has hit exactly: scene points between the
light source and the camera. We can therefore “unroll” the
individual steps of light transport as it propagates through

whereL”



the scene by expressing the outgoing light fiklg,, as a Proof: From Egs. (6) and (12) we have
sum of individualn-bounce light fields:

c! — plp-1
Louwt = » L, whereC![i,i] = 1, andC'[i,j] = —Al[i, j]. Since only
n=1 one pointp, is illuminated in each ISF anpl; appears only
_ R 1 : ;
3 The Lambertian Case at pixel 4, it follows that T* must be a diagonal matrix.

) : ) - SinceT! is diagonal andC! has ones along the diagonal, it
While the results in Section 2 place no restriction on the ¢} ,0ws that

BRDF or range of camera viewpoints, they provide only

an existence proof of inverse light transport operators. We

now turn to the problem of computing®. To this end, we

show that if the scene is Lambertian, we can compute theseQED, ) L . L

operators from images taken at a single viewpoint. ; Th|§ closed-form expression f@" provides exphqt n-
A defining property of Lambertian scenes is that each ormation about surface reﬂe(_:tance and relative visibility.

point radiates light equally in a hemisphere of directions. SPecifically, from [11] we obtain

We may therefore reduce the 4D outgoing light field to a Cl_1_PK (14)

2D set of outgoing beams, one for each point on the sur- - ’

face. A second property of Lambertian scenes is that if We  hereP is a diagonal matrix wittP[i, ] specifying the

illuminate a point from two different directions, the pattern albedo for point divided by, andK is7the matrix of dif-

of outgoing radiance (and hence interreflections) is the Sam& seform factors[21]. Morem’/er Eq. (14) implies that our

uptoa scale factor. We may therefore reduce the 4D inci- method can handle variation in ’surface texture.

dent light f'eIdL”f tq a 2D subset. . . . SinceT is formed from impulse images, its diagonal el-
Because the incident and outgoing light fields are both ements correspond to points that were directly illuminated

ﬁD for th? Lambertian cl;ase, W? I'Car?t captu;ﬁ an ISfF matn;( by the laser. Hence, the diagonalBfdominates the other
y scanning a narrow beam of light over the surface and g jentg of the matrix. In practice, we have found thas

capturing an image from a fixed camera for each position well conditioned and easy to invert
of the beam. Each ISE; is constructed by concatenating _ y ’
the pixels from the-th image into a vector and normalizing 3.1 Practical Consequences

to obtain a unit-length vector (thereby eliminating the scale 3.1.1 General 4D incident lighting

dependence on incoming beam direction). _ A key property of the Lambertian cancellation operator

We now assume without loss of generality that there is a C1 js that it cancels interreflections for the given viewpoint
one-to-one correspondence betweescene pointsy im- underany unknown 4D incident light field. Because the
age pixels, andn incident light beams, i.e., incident beam gspace of ISFs for the Lambertian case is 2D and not 4D,
¢ hits scene pointwhich is imaged at pixel* it follows that any outgoing light field.,,; (under any 4D

We assume that only points which reflect light (i.e., have incident illumination) can be expressed as a linear combi-
positive albedo) are included among thescene points.  nation of 2D ISFs . The coefficients of this linear combi-
Finally, to simplify presentation, we assume that all points nation determine an equivalent 2D illumination field (along
that contribute reflected light to the image, direct or indi- the rays defined by the captured ISFs) that produces a
rect, are included among the points. We relax this last light field identical toLq.;.
assumption in Section 3.1.2. _ _ It follows that C! will correctly cancel interreflections

Our formulation of the Lambertian ISF matrix, together eyen in very challenging cases, including illumination from
with the interreflection equations, leads to a closed-form a flashlight or other non-uniform area source; from a video
and computable expression for the interreflection operator: projector sending an arbitrary image; or from an unknown
surrounding environment. See Section 4 for demonstrations
of some of these effects.

T'[i,i] = T

Lambertian Interreflection Cancellation The-

orem: Each view of a Lambertian scene defines a

uniquem x m interreflection cancellation opera- 3.1.2 Interactions with occluded points
tor, C!, given by the expression To facilitate our proof of the interreflection theorem,
we assumed that an ISF was captured for every point that
C'=T'T, (13) contributes reflected light to the image (direct or indirect).

Stated more informally, every point that plays a role in the
light transport process must be visible in the image. This
assumption is not as restrictive as it sounds because our
4This is achieved by including only beams that fall on visible scene formulation allows for multi-perspective images—for in-
points and removing pixels that are not illuminated by any beam. stance, we can create an “image” by choosing, for every

whereT! is a diagonahm x m matrix containing
the reciprocals of the diagonal elementsIof!.




Image for

beam position i 1

(a) (b)

Figure 2:(a) Light hittingp; interreflects off of occluded points
that are not within the field of view of the camera (dotted lines),
causing additional light to hip; andp2. (b) An alternative ex-
planation is that there are no occluded points, but additional light
flowed fromp; directly top2, and from external light sources to
p:1 (dashed lines).

4 Pixel { ~—t—pfa
|
T

Beam position 7

Figure 3:Graphical representation of the ISF matrix for the syn-
thetic “M” scene. The image captured at thth beam position
becomes thé-th column of the ISF matrifC. The pixel receiv-
ing direct illumination (positiort) is mapped to elemerif (i, 7).
point on the surface of the object, a ray that ensures theBecause the scene contains four fac@has4® = 16 “blocks:”

point is visible. the block shown in gray, for instance, describes the appearance of
In practice, it may be difficult to capture an ISF for every points on facet 2 when the beam is illuminating a point on facet 4.
point, and it is convenient to work with single-perspective ‘

images that contain occlusions. It is therefore important
to consider what happens in the case of interactions with
occluded points, i.e., points that are not represented in the
columns of T. Fortunately, the cancellation theorem also
applies to such cases because of the following observation.
Suppose that light along a beam from a visible pgint
bounces off oft invisible points before hitting the first vis-
ible pointp; (Figure 2a). We can construct a different in-
terpretation of the same image that does not involve invis-
ible points by treating all of this light as if it went directly
from p; to pj, i.e., thek bounces areollapsedinto a sin-

gle bounce (Figure 2b). It is easy to see that the transport
equation, Eq. (3), still applies—there is just more light flow-
ing betweerp; andp;. The collapsed rays have the effect Figure 4: Left-top: image of the “M” scene. Spots in top-left
of (1) increasingA[i, j] to take into account the additional image indicate the pixels receiving direct illumination as the beam

; pyt? " ; , ; ; panned from left to right.Left-middle: One of the captured im-
ltlr?: t;gs;:g:zsarggﬁﬁhgff[girpe%t,,t ?"Iljjm?: e(liti‘()?llrl([:ir]egl?;g ages, corresponding to the 4th position of_the Iaser' beam. '_I'he 4th
h 41 ou column of the ISF was created by qollectlng _the pixels indicated

enceg; . 1 . . . by the spots at top-left and assembling them into a column vector.
~ Itfollows that C" applies as before, with the modifica- | eft-pottom: image of the scene corresponding to another beam
tion that light whichp; sends to itself via any number of position.Right: The complete ISF matrix.

intermediate bounces off of invisible surfaces is treated as
direct illumination and therefore not cancelled. Similarly,
C2 will not cancel light thatp; sends top; through any
number of intermediate bounces off of invisible surfaces.

To exploit the extreme dynamic range offered by the laser
(over 145dB), we acquired HDR images with exposures
that spanned almost the entire range of available shutter
speeds—from /15s to 1/8000s with an additional image

. with an aperture of'16 and a speed af/8000. All images
4 Experimental Results were linearized with Mitsunaget al's radiometric calibra-

In order to confirm our theoretical results, we performed tion procedure [22]. We used only the green channel by
experiments with both real and synthetic scenes. Our em-demosaicing the raw CCD data.

phasis was on computing cancellation operators and
bounce images, and comparing them to ground-truth from  To capture a scene’s ISF, we moved the laser beam
simulations. to a predetermined set ofi directions and captured a
Our experimental system consisted of a Canon EOS-high-dynamic range image for each direction. Since our
20D digital SLR camera, a 50mW collimated green laser analysis assumes a known one-to-one correspondence
source, and a computer-controlled pan-tilt unit for direct- between them illuminated scene points and the pixels
ing the laser's beam. To minimize laser speckle, we usedthey project to, we first determined the pixel that received
a Canon wide-aperture, fixed focal length (85mm) lens anddirect illumination. To do this, we found the centroid
acquired images using the widest possible apertiie?. of the laser spot in the shortest-exposure image for each
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Figure 5:Inverse light transport computed from the ISF maffifor the “M” scene. Top row shows typical light paths, middle row shows
simulation results, and bottom row shows results from real-world d&tam left to right: the ISF matrix, direct illumination (1-bounce),

the 2-, 3- and 4-bounce interreflection components of the ISF , and total indirect illumination. Images are log-scaled for display purposes.

Computing k-bounce operators in 1DAs the first exper-
iment, we simulated a scene containing a Lambertian sur-
face shaped like the letter “M.” To build its ISF matrix, we
simulated an incident beam that moves from left to right
(Figure 3). For each position of the beam, we rendered
an image by forward-tracing the light as it bounces from
facet to facet, for up to 7 bounces. These images formed
the individual columns of the ISF matrix. At the same time,
our renderer computed the contribution of individual light
bounces in order to obtain the “ground trutt¥bounce im-
ages for the scene.

The top row of Figure 5 shows the result of decomposing
the simulated ISF matrix into direct, 2- through 4-bounce,
and indirect illumination components. To assess this de-
composition qualitatively, consider how light will propagate
after it hits a specific facet. Suppose, for instance, that we il-
luminate a point on the scene’s first facet (red column of the
) ISF matrix in Figure 5). Since only one point receives di-
Figure 6: Inverse light transport applied to imagéscaptured  rect jllumination, cancelling the interreflections in that col-
under .unkr!owr.w iIIuInination conditions/ is degomposed into umn should produce an image with a single non-zero value
direct illumination I and subsequeni-bounce imaged™, as  |ocated at the point’s projection. The actual cancellation
_showr_1. Observ_e that the interreflections hav_e the_ effect 01‘|ncreas-result indicated by the red column @'T. matches this
ing brightness in concave (but not convex) junctions of the *M". redi(;tion Now, light reflected from face’é 1 can only illu-
Image intensities are scaled linearly, as indicated. Pninate fac;ets 2,angd 4. This implies that the 2—bour)1/ce im-
beam direction.These centroids were used to Samp'ﬁ all age should contain non-zero responses on|y for points on
input images. Hence, each image providedntensities,  those two facets. Again, application of the 2-bounce op-
corresponding to a column of the x m ISF matrix. erator, C2T, yields the predicted result. More generally,




light that reaches a facet afterbounces cannot illuminate
that facet in then 4+ 1)—th bounce. We therefore expect

to see alternating intensity patterns in the 4 blocks of
C"T asn ranges from 2 to 4. The computeebounce ma-
trices confirm this behavior. These cancellation results are
almost identical to the ground truth renderetbounce im-
ages, with squared distances between corresponding (nor-
malized) columns that range from 3.45e-34 for the 1-bounce
image to 8.59e-13 for the 3rd bounce.

We repeated the same experiment in our laboratory
with a real scene whose shape closely matched the scene
in our simulations (Figure 4). The result of decomposing
the captured ISF matrix is shown in the bottom row of
Figure 5. The computead-bounce matrices are in very Figure 7: The 2D scene and its ISF matfix One column
good agreement with our simulation results. The main Of the ISF matrix represents the resampled image captured
exceptions are near-diagonal elements in the 2-bouncedt a corresponding laser point.
matrix, C>T. These artifacts are due to lens flare in 5 Conclusions
the neighborhood of the directly-illuminated pixel. Lens
flare increases the intensity at neighboring pixels in a
way that cannot be explained by interreflections and, as
result, the intensities due to flare cannot be cancelledby

This paper addressed the problem of computing and re-
moving interreflections in photographs of real scenes. We
aproved the existence of operators that cancel interreflections

in photographs when the geometry, surface reflectance, and
. ) ) illumination are all unknown and unconstrained. For the
Inverting light transport in 1D A key feature of our 546 of L ambertian scenes we demonstrated that such oper-
theory is that it can predict the contribution of theth ators can be computed, and verified the correctness and via-
light bounce in images taken under unknown and com- pijivy of the theory on both synthetic and real-world scenes.
pletely arbitrary illumination. Figure 6 shows the results prohiems for future work include devising more efficient

of an experiment that tests this predictive power. We maihods for capturing ISF matrices and estimating cancel-
took two photos of the “M” scene while illuminating it |ation operators for non-Lambertian scenes.

with a flashlight and with room lighting. The resulting
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