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Abstract. In this paper we study the problem of recovering the 3D shape, reflectance, and non-rigid motion
properties of a dynamic 3D scene. Because these properties are completely unknown and because the scene’s shape
and motion may be non-smooth, our approach uses multiple views to build a piecewise-continuous geometric and
radiometric representation of the scene’s trace in space-time. A basic primitive of this representation is the dynamic
surfel, which (1) encodes the instantaneous local shape, reflectance, and motion of a small and bounded region
in the scene, and (2) enables accurate prediction of the region’s dynamic appearance under known illumination
conditions. We show that complete surfel-based reconstructions can be created by repeatedly applying an algorithm
called Surfel Sampling that combines sampling and parameter estimation to fit a single surfel to a small, bounded
region of space-time. Experimental results with the Phong reflectance model and complex real scenes (clothing,
shiny objects, skin) illustrate our method’s ability to explain pixels and pixel variations in terms of their underlying
causes—shape, reflectance, motion, illumination, and visibility.
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3D motion capture, reflectance modeling, illumination modeling, Phong reflectance model

1. Introduction

In this paper we consider the problem of Multi-View
Scene Capture—using multiple cameras to simultane-
ously recover the shape, reflectance and non-rigid mo-
tion of an unknown scene that evolves through time in a
completely unknown way. While many techniques ex-
ist for recovering one of these properties when the rest

∗This research was conducted while the authors were with the
Departments of Computer Science and Dermatology at the Univer-
sity of Rochester, Rochester, NY, USA.

of them are known (e.g., capturing the 3D motion of
articulated (Drummond and Cipolla, 2000; Deutscher
et al., 2000; Sidenbladh et al., 2000; Delamare and
Faugeras, 1999; Yacoob and Davis, 2000), or de-
formable scenes (DeCarlo and Metaxas, 2000; Guenter
et al., 1998; Zhou and Kambhamettu, 2000); recon-
structing static Lambertian scenes (Kutulakos and
Seitz, 1999; Szeliski, 1999; Brodsky et al., 1999); and
recovering the reflectance of static scenes with known
shape (Sato et al., 1997; Wood et al., 2000)), our fo-
cus here is on the general case. In particular, how can
we capture 3D scenes whose appearance depends on
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time-varying interactions between shape, reflectance,
illumination, and motion? Answering this question
would go a long way toward recovering many com-
mon real-world scenes that are beyond the current
state of the art, including highly-deformable and
geometrically-complex surfaces whose shape, mo-
tion, self-occlusions and self-shadows change through
time (e.g., clothing (Baraff and Witkin (1998))),
non-Lambertian surfaces with complex shape and
deformation properties (e.g., mm-scale dynamic rep-
resentations of the human body), and static or moving
3D objects with specular surfaces (Lin and Lee, 1999,
2000; Lu et al., 1999; Sato and Ikeuchi, 1994; Nayar
et al., 1993; Torrance and Sparrow, 1967).

We argue that general solutions to the scene capture
problem must ultimately satisfy four criteria:

• Generality: Computations should rely as little as
possible on the scene’s true motion, shape and
reflectance.

• Physical consistency: Computations should consis-
tently explain all pixels and pixel variations in terms
of their physical causes, i.e., the 3D position, ori-
entation, 3D velocity, visibility, and illumination of
individual scene points (which can change dramati-
cally), and their reflectance (which usually does not).

• Reconstructibility conditions: It should be possible
to state the conditions under which the reconstruction
process is valid and/or breaks down.

• Spatial and temporal coherence: Real scenes rarely
consist of isolated and independently-moving points
and therefore this constraint should be integrated
with computations.

As a first step in this direction, we present a
novel mathematical framework whose goal is to re-
cover a piecewise-continuous geometric and radiomet-
ric representation of the space-time trace of an un-
known scene. The representation’s basic primitive is
the dynamic surfel (surface element), a high-degree-of-
freedom description of shape, reflectance and motion
in a small, bounded 4D neighborhood of space-time.
Dynamic surfels encode the instantaneous position, ori-
entation, curvature, reflectance, and motion of a small
region in the scene, and hence enable accurate pre-
diction of its static and dynamic appearance under
known illumination conditions. Using this represen-
tation as a starting point, we show that scene capture
can be achieved by formulating and solving a collection
of spatiotemporally-distributed optimization problems,
each of which attempts to recover a single dynamic

surfel that approximates the scene’s shape, reflectance
and motion in a specific space-time neighborhood.

At the heart of our approach lie two key observations.
The first observation is that when an opaque scene is
viewed and illuminated in a known way and its re-
flectance is defined parametrically, it is possible to de-
termine the consistency of a surfel with the input views
regardless of the complexity of the scene’s shape or its
reflectance function, as long as the inter-reflections can
be ignored. Using this observation as a starting point,
we reduce instantaneous shape recovery to the problem
of performing a sequence of space queries. Each query
determines whether any scene points exist inside a spe-
cific bounded neighborhood of 3D space and, if they
do, it computes the globally-optimal surfel fit, i.e., the
surfel that best predicts the colors at the points’ pro-
jections. We show that every query defines a global
optimization problem in the space of all surfel descrip-
tions and that it is possible to quantify precisely the
conditions under which the globally-optimal solution
is consistent with the appearance of the true scene. Im-
portantly, we show that we can efficiently search surfel
space for this solution with an algorithm called Surfel
Sampling. This algorithm integrates explicit sampling
of surfel space with a sequence of linear and non-linear
parameter estimation stages to find the optimal surfel
fit. Moreover, by combining Surfel Sampling with a
global method that resolves camera and light-source
occlusions, we can capture 3D scenes despite dramatic
changes in the visibility and appearance of scene points.

The second observation is that 3D motion recovery
becomes considerably simplified when the scene’s
instantaneous 3D shape and reflectance properties have
already been estimated. Starting from the principle
that reflectance is the only scene property that remains
constant, we show that we can (1) recover 3D motion
descriptions without making any assumptions about
the motion of scene points, (2) estimate 3D motion even
in the presence of moving specularities, (3) incorporate
spatio-temporal coherence into motion computations
for improved stability, (4) assign a dense and non-rigid
instantaneous motion field to every surfel by solving
a direct linear estimation problem that depends only
on pixel intensities and generalizes existing direct
methods (Zelnik-Manor and Irani, 2000; Irani, 1999),
and (5) improve shape and reflectance estimates by
incorporating dynamic constraints into the surfel esti-
mation process. Experimental results with real scenes
that deform in very complex ways (clothing, skin) and
the Phong reflectance model (Watt, 2000) illustrate
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the method’s ability to recover coherent 3D motion,
shape and reflectance estimates from multiple views.

Little is currently known about how to recover simul-
taneously such estimates for unknown, geometrically-
complex and deforming scenes. Since our goal is to
recover these estimates simultaneously, our work is
closely related to approaches in both stereo and mo-
tion estimation. While recent scene-space stereo meth-
ods can successfully recover the shape of complex
3D scenes by resolving multi-view occlusion rela-
tionships, they rely on discrete shape representations
(e.g., lines (Collins, 1996), voxels (Kutulakos and
Seitz, 2000; Seitz and Dyer, 1999; Kutulakos, 2000;
Narayanan et al., 1998; Roy and Cox, 1998; Chen and
Medioni, 1999), and layers (Szeliski, 1999; Szeliski
and Golland, 1998; Szeliski et al., 2000)) that cannot
model surface orientation explicitly. This has limited
their applicability to Lambertian scenes with static illu-
mination, where the dependencies between surface ori-
entation, scene illumination, and scene appearance can
be ignored. Moreover, their built-in emphasis on pixel-
wise correspondence metrics (Kutulakos and Seitz,
1999) makes it difficult to incorporate spatial coherence
constraints which can reduce sensitivity to noise and
can lead to physically-plausible reconstructions (Snow
et al., 2000). Even though mesh, particle and level-set
stereo methods (DeCarlo and Metaxas, 2000; Fua and
Leclerc, 1995; Fua, 1997, 1999; Samaras and Metaxas,
1998; Jin et al., 2000; Faugeras and Keriven, 1998)
can, in principle, model surface orientation (Samaras
and Metaxas, 1998; Jin et al., 2000), their use of a sin-
gle functional to assess the consistency of a complete
shape makes it difficult to study how reflectance and il-
lumination computations at one location of a shape will
affect computations elsewhere. Even more importantly,
no formal study has been undertaken to establish the re-
constructibility conditions of these techniques, i.e., the
conditions under which the computed reconstructions
coincide with the scene’s true shape.

Unlike existing stereo methods, our surfel-based rep-
resentation and our space-query formalism are spatially
localized. This allows us to define a tractable opti-
mization problem with well-defined reconstructibility
conditions and an algorithm that has predictable per-
formance. Moreover, because surface orientation is ex-
plicitly represented, our approach can handle scenes
with non-Lambertian reflectance and multiple sources
of illumination. Hence, our surfel-based formalism
can be thought of as striking a balance between the
need to reason about orientation explicitly during the

reconstruction process, the desire to incorporate the
spatial coherence constraints found in many binocular
stereo techniques (Ohta and Kanade, 1985; Belhumeur,
1996; Silva and Santos-Victor, 2000) while preserv-
ing the occlusion-resolution properties of scene-space
methods, and the desire to ensure the tractability of the
shape estimation problem by keeping the representa-
tion of distant scene points separate.

In the context of motion estimation, single-view
methods have relied on known models of 3D shape
(Drummond and Cipolla, 2000; Deutscher et al., 2000;
Sidenbladh et al., 2000; Delamare and Faugeras, 1999;
Guenter et al., 1998; Lowe, 1991; Bregler and Malik,
1998; DeCarlo and Metaxas, 1998) or 3D motion
(Sidenbladh et al., 2000; Zelnik-Manor and Irani,
2000; Irani, 1999; Tomasi and Kanade, 1992; Bregler,
2000; Ben-Ezra et al., 2000; Avidan and Shashua,
2000; Béréziat et al., 2000; Zhou et al., 2000; Papin
et al., 2000) to make motion estimation a well-posed
problem, or have focused on improving the robust-
ness (Anandan, 1989; Black et al., 2000; Ye and
Haralick, 2000; Smith et al., 2000) and physical va-
lidity (Fleet et al., 2000; Haussecker and Fleet, 2000;
Negahdaripour, 1998; Gaucher and Medioni, 1999) of
2D motion estimation. Unfortunately, the use of known
3D shape models limits the types of scenes that can
be reconstructed, while the ill-posed nature of single-
view 3D motion estimation makes it difficult to ac-
count for image variations in a way that is consis-
tent with a scene’s true 3D geometry (Haussecker and
Fleet, 2000). Even though a small number of multi-
view methods has been proposed for estimating 3D
motion, their reliance on potentially-noisy pointwise
flow calculations (Vedula et al., 1999, 2000) and on the
brightness constancy assumption (Vedula et al., 1999,
2000; Zhang and Kambhamettu, 2000; Tzovaras and
Grammalidis, 1997) restricts them to slowly-moving
Lambertian scenes, where the effects of shading and
shadows on scene appearance is negligible.

Our approach extends existing methods to 3D mo-
tion capture in six ways. First, by relying on a
spatially-distributed surfel representation to compute
unconstrained 3D motion, our approach allows us to re-
construct 3D motion fields that are beyond the capabili-
ties of existing model-based methods. Second, because
these fields are dense and are extracted from video
alone, they allow us to analyze the motion of scenes,
such as clothing, whose motion cannot be adequately
represented by a small number of feature points (as in
the case of articulated figures) and whose mechanical
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properties would change if they were instrumented to
facilitate motion capture (e.g., with optical or magnetic
trackers). Third, by relying on multiple views to re-
cover 3D motion, our approach leads to a well-posed
and solvable estimation problem. Fourth, because our
approach recovers a parametric 3D motion field inde-
pendently for each dynamic surfel, it can be thought of
as generalizing existing methods that rely on 2D layers
(Wang and Adelson, 1993) and parameterized 2D flow
models (Ye and Haralick, 2000; Black and Anandan,
1996; Black, 1999) to exploit spatio-temporal coher-
ence and reduce sensitivity to noise. Fifth, by relying
on reflectance- instead of brightness-constancy, our for-
mulation allows us to recover the motion of rapidly-
moving Lambertian scenes as well as scenes with non-
Lambertian reflectance properties. Sixth, by integrating
3D shape, reflectance, and motion computations into a
single optimization framework, our approach ensures
that all multi-view and multi-frame constraints con-
tribute simultaneously to the estimation of the scene’s
static and dynamic properties.

The rest of the paper is structured as follows.
Section 2 describes our image formation model and
leads to a pair of picture invariants, which allow us
to extend the common brightness constancy assump-
tion to moving Lambertian or non-Lambertian scenes.
Sections 3 and 4 then describe our dynamic surfel
representation and define the notion of surfel photo-
consistency, which allows us to quantify the consis-
tency between a surfel-based scene description and the
multi-view image streams that are given as input. These
sections lead to a key reconstructibility result, the Sur-
fel Approximation Theorem, that characterizes the con-
ditions under which surfel photo-consistency can be
established and that motivates our surfel-based recon-
struction approach. Using this theorem as a starting
point, Section 5 introduces our space query framework
and describes the Surfel Sampling Algorithm for com-
puting scene shape and reflectance. This framework
is extended in Section 6 through the development of
a non-linear method for surfel-based 3D motion esti-
mation. Section 7 then summarizes our algorithm for
global 3D shape, reflectance and motion recovery, and
Section 8 presents experimental results on a variety of
complex real scenes.

2. Picture Invariants

Consider a 3D scene undergoing unknown and po-
tentially non-rigid motion in space. We assume that

Figure 1. Steps defining the scene’s image formation model.

the scene is viewed under perspective projection from
N ≥ 2 known positions c1, . . . , cN and is illuminated
by L known point light sources l1, . . . , lL . Our goal
is to compute the scene’s 3D shape and motion from
its time-varying projections in the N input views. To
achieve this, we define a set of picture invariants that
allow us to relate the instantaneous colors and intensi-
ties of pixels in one view of the scene to those observed
in other views and time instants. We obtain these in-
variants by first modeling the way that the scene’s ge-
ometry, motion, and reflectance properties determine
its appearance (Fig. 1).

2.1. Static and Dynamic Scene Geometry

We assume that the scene’s instantaneous shape is de-
scribed by a collection of regular surfaces whose clo-
sure bounds a possibly-disconnected volume in �3

(do Carmo, 1976). When a regular surface S of the
scene moves or deforms in space, the spatio-temporal
evolution of its points can be described by a three-
parameter function x̂ that encodes the points’ 3D posi-
tion and velocity (Fig. 2(a)). Let x : (U ⊂ �2) → �3

be an orthonormal parameterization of the surface S at
time t = t0. The evolution of S through time can then be

Figure 2. (a) Dynamic scene geometry. (b) Scene reflectance
geometry.
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described by a function x̂(u, v, t) : (U ×T ) → �3 that
simply extends x into the time dimension. Given a time
instant t1 ∈ T potentially distinct from t0, the function
x̂(u, v, t1) is the parameterization of S’s instantaneous
shape at time t1. Similarly, given a moving surface point
p whose instantaneous 3D position at t0 is x(u0, v0), the
function x̂(u0, v0, t) defines p’s space-time trace. In the
following, we focus our attention on dynamic scenes
for which the function x̂ is smooth everywhere. This
allows us to assign a well-defined velocity, x̂t , to all
points on S for all time instants in T .1

2.2. Image Formation Model

The color and intensity at the projection of a vis-
ible scene point depend on the scene’s reflectance
properties and the point’s incident illumination. We
rely on the Phong model (Watt, 2000) to represent the
reflectance properties of specular scenes, one of the
mathematically- and computationally-simplest para-
metric reflectance models available. The model im-
plicitly specifies the scene’s bi-directional reflectance
distribution function (BRDF) (Lin and Lee, 1999;
Torrance and Sparrow, 1967; Wolff et al., 1998; Oren
and Nayar, 1997; Koenderink et al., 1999; Lafortune
et al., 1997; Cook and Torrance, 1981), i.e., the ratio
of outgoing radiance along a direction dout to incom-
ing irradiance along a direction din as a function of the
local surface geometry (Fig. 2(b)).

Let p = x(u, v) be a scene point with normal n =
xu ∧ xv . We define the reflectance model of p to be the
sum of two components, a diffuse reflection compo-
nent, βD, and a specular reflection component, βS, that
follows a cosine-lobe law:

β(p, n, dout, din, λ)
def= βD(p, n, din, λ)

+ βS(p, n, dout, din) (1)

βD(p, n, din, λ)
def= ρ(u, v, λ)CD(n, din) (2)

βS(p, n, dout, din)
def= f (u, v)[CS(n, dout, din)]k(u,v)

(3)

where λ corresponds to a color band (red, green,
or blue);2 ρ(u, v, λ) defines the surface albedo at p;
f (u, v) and k(u, v) are the coefficients of the specular
model; CD(n, din) is the cosine of the angle between the
normal n and din; and CS(n, dout, din) is the cosine of
the angle between dout and the reflection of din about
the normal n. We assume that the functions f (u, v)
and k(u, v) are arbitrary piecewise-smooth functions

and that the albedo function, ρ(u, v), has a finite power
spectrum but is arbitrary in all other respects.

Knowledge of the visibility, incident illumination,
3D position, orientation and reflectance properties of
every scene point p is sufficient to reproduce images
of the scene for any camera and light source position.
We call p visible from a viewpoint ci if and only if
the open line segment pci does not intersect the scene
volume. The scene’s reflectance model tells us that the
pixel color at the i-th projection of any visible point is a
sum of two colors, a diffuse color I D(p) and a specular
color I S

i (p):

Ii (p)
def= I D(p) + I S

i (p) (4)

I D(p)
def=

L∑
l=1

βD(p, n, ll − p)Ll(p) (5)

I S
i (p)

def=
L∑

l=1

βS(p, n, ci − p, ll − p)Ll(p) (6)

where Ll(p) measures the irradiance due to the l-th
light source as a function of point position and light
source color. In our model, we assume that Ll(p) is
zero if p is in shadow from ll (i.e., p is not visible
from position ll) and is a known function of ‖ll − p‖
otherwise. Hence, Eqs. (5) and (6) tell us that the dif-
fuse and specular colors at the projection of a point
p are obtained by summing the diffuse and specular
contributions, respectively, of every light source that
directly illuminates point p. This model assumes that
(1) pixel intensities measure scene radiance directly,
(2) the scene is opaque, and (3) inter-reflections can be
ignored.3

The image formation model defined above has four
important properties. First, it allows us to capture
viewpoint-dependent pixel color variations that are
common in scenes with non-diffuse reflectance prop-
erties. Second, it allows us to represent the appearance
of scenes under very general viewing and illumination
conditions—the scene may self-occlude, may contain
multiple point light sources, may cast shadows onto it-
self from one or more light sources, and may exhibit
multiple specular highlights due to potentially-distinct
light sources. Third, it requires only a small number
of parameters—the albedo ρ, the factor f that defines
the weight of the specular component, and the specular
exponent k—to fully specify the appearance of a scene
point under known illumination. This is especially im-
portant from a computational point of view, since these
parameters must ultimately be estimated from the input
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photographs using non-linear estimation.4 Fourth, it
models the color and intensity of every pixel as the
sum of two colors, one of which depends on viewpoint
and one of which does not. This leads directly to our
notion of a picture invariant, described below, which
aims to eliminate the viewpoint- and time-dependent
components of a point’s color in the input views.

2.3. Static and Dynamic Picture Invariants

Even though our image formation model suggests that
the color and intensity at the projection of a scene
point can vary from one viewpoint to another or one
time instant to the next, these variations cannot be ar-
bitrary. Here we use this observation to assign to ev-
ery pixel in the input view one static and one dynamic
picture invariant, i.e., a color that is viewpoint- and
time-independent, respectively.

In particular, let p = x(u0, v0) be a scene point at
time t = t0 and let Ii (p) be the pixel color at p’s pro-
jection along a viewpoint ci from which p is visible.
Observation 1 tells that as long as we can compute the
contribution of specular reflectance to p’s appearance,
we can define a color I Dinv

i (p) that does not depend on
the camera’s viewpoint:

Observation 1 (Static Picture Invariant).

I Dinv
i (p)

def= Ii (p) − I S
i (p) = I D(p), (7)

where I S
i (p) is given by Eq. (6).

Intuitively, the Static Picture Invariant I Dinv
i (p) es-

timates the contribution of diffuse reflectance to p’s
appearance, which is a viewpoint-independent quan-
tity. Since this invariant is defined for every pixel in an
input view, it can be thought of as defining, for every
input image Ii , a new image I Dinv

i whose pixel colors
and intensities do not depend on the viewpoint from
which the original image was taken.5

Our Static Picture Invariant can also be thought of
as a generalization of the commonly-used brightness
constancy constraint, which assumes that the color and
intensity at a point’s projection remain completely un-
changed when the camera’s viewpoint or the scene it-
self move in space. Unfortunately, while existing work
on motion analysis and shape-from-stereo has relied
almost exclusively on this constraint (Horn, 1986), it
is valid only for static diffuse scenes. Our invariant

extends recent attempts to generalize this constraint
(Béréziat et al., 2000; Black et al., 2000; Haussecker
and Fleet, 2000; Negahdaripour, 1998) so that shape
recovery for non-diffuse scenes can also be studied in
a rigorous manner.

In order to establish constraints on the temporal ap-
pearance variation of a scene point, we assume that
the reflectance properties of every scene point remain
unchanged as it moves through space. Unlike bright-
ness constancy, which is violated even for diffuse
scenes undergoing rotational motion, our reflectance
constancy assumption only requires that the scene’s
physical properties remain unchanged during its mo-
tion. Given a moving scene point p = x̂(u0, v0, t) that
is visible to the i-th camera and is illuminated by at
least one light source at time t , this allows us to define
a picture invariant I Ainv

i,t (p) that is completely indepen-
dent of viewpoint and time and can be thought of as an
estimate of p’s albedo:

Observation 2 (Dynamic Picture Invariant).

I Ainv
i,t (p)

def= Ii (p) − I S
i (p)

RD
t (p)

= ρ(u0, v0) = constant,

(8)

where

RD
t (p)

def=
L∑

l=1

CD(n, ll − p)Ll(p). (9)

The Dynamic Picture Invariant of a point p is a sim-
ple “re-weighting” of the point’s static invariant; its
time-invariance follows directly from Observation 1
and Eqs. (2) and (5). Intuitively, by re-weighting the
Static Picture Invariant we eliminate the invariant’s de-
pendence on surface orientation. The resulting quantity
does not depend on viewpoint, surface orientation, or
time under our reflectance constancy assumption.

3. The Dynamic Surfel Representation

Any general approach that attempts to recover 3D shape
and motion by inverting the image formation model
of Section 2 must explicitly take into account four
properties of scene points—visibility, orientation, re-
flectance and motion. This is because these proper-
ties contribute simultaneously to the color and inten-
sity of every pixel in the input views. We therefore
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develop a global, spatially-distributed scene represen-
tation, called the dynamic surfel representation, that is
specifically designed to make such an analysis possible.
From a geometrical point of view, the dynamic surfel
representation of a scene at time t is a sample-based
description of the envelope of the scene’s surface(s)
at t (do Carmo, 1976), and the way that this envelope
changes when the scene moves or deforms. It consists
of a finite collection of dynamic surfels (surface ele-
ments), each of which describes the scene’s tangent
plane, motion, and picture invariants in a small neigh-
borhood of a surface point:

Definition 1 (Dynamic Surfel). A dynamic surfel, D,
is represented by the tuple D def= 〈t0,S,R,B,M〉,
where t0 is a time instant; S is the surfel’s 3D shape
component;R is its reflectance component;B is a para-
metric bump map; and M is its 3D motion component.

3.1. 3D Shape Component

The 3D shape component of a surfel is simply defined
as the intersection of a plane and an ε-ball, B(o, ε), that
determines the surfel’s spatial extent (Fig. 3(a)). We can
therefore fully specify the surfel’s shape component
with seven parameters—three for the coordinates of the
surfel’s reference point o, one for the size parameter ε,
two for the surfel’s unit normal n, and one for the signed
distance d of the surfel’s plane from the reference point:

S def= 〈o, ε, n, d〉. (10)

Figure 3. (a) The surfel 3D shape representation. The surfel’s spa-
tial domain is the circular intersection of the surfel plane with the
ball B(o, ε). When surfels are used to approximate non-planar scenes,
this ball establishes a bound on the spatial extent of a surfel’s planar
approximation. (b) The surfel bump map representation, where n is
the surfel plane’s normal.

The surfel shape component induces a parameteriza-
tion of all points on a surfel at a fixed instant t = t0. This
parameterization assigns a pair of coordinates to every
surfel point. More specifically, let s0 be the surfel point
closest to o and let su, sv be two arbitrary orthonormal
vectors on the surfel’s plane. The 3D coordinates of
every point on a surfel are then uniquely determined
by a pair of surfel coordinates, (u, v):

s(u, v)
def= s0 + usu + vsv. (11)

Our surfel shape representation allows us to rep-
resent the scene’s instantaneous global shape as a
finite collection of surfels with shape components
S1, . . . ,SM (Fig. 12). This collection completely de-
termines the visibility of all surfel points: if s is a point
on an arbitrary surfel S j in this collection and ci is
an input camera viewpoint or a light source position,
we call s visible from ci if and only if the open line
segment sci does not intersect any surfel in the collec-
tion. Our surfel representation can therefore be used to
model scenes that contain significant amounts of oc-
clusion or self-shadows. In the following, we represent
the visibility of a surfel point s with a binary function
vis(ci , s) that is equal to one if and only if s is visible
from viewpoint ci .

3.2. Reflectance Component

We define the reflectance component of a surfel to be
a two-parameter tuple that assigns a constant specular-
lobe model βS to every surfel point. More specifically,
the reflectance model of Eq. (1) tells us that reflectance
at each surfel point s(u, v) is completely determined
by an albedo function ρ(u, v) and the two functions
f (u, v) and k(u, v) that specify the surfel’s specular
reflectance properties. We further constrain this model
by requiring that the functions f (u, v) and k(u, v) be
constant for all points on a surfel, and by allowing the
constants f, k to vary arbitrarily from one surfel to the
next:

R def= 〈 f, k〉. (12)

Our representation is therefore designed to model the
reflectance of scenes whose specular component is
either piecewise constant or varies slowly over the
surface.

A key feature of this representation is that no albedo
information is encoded in the representation itself.
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From a mathematical point of view, this is because only
the specular reflectance component is needed to com-
pute Static and Dynamic Picture Invariants from the
input views. Since our approach relies only on these
invariants to relate pixels across multiple views and
time instants, it allows us to recover a surfel-based
scene representation without explicitly reconstructing
the scene’s albedo function, which may be very com-
plex since it is allowed to vary arbitrarily over the
scene’s surface.

3.3. Parametric Bump Map

Bump maps are a popular computer graphics tool for
improving the visual fidelity of synthesized images
without increasing the geometric complexity of the un-
derlying 3D scene representation (Blinn, 1978). They
are typically used to convey an impression of surface
roughness by altering the surface orientation attributes
of individual points on a geometric model without al-
tering the points’ position in space. Here we associate
a parametric bump map with every surfel to ensure that
even though surfels are planar objects, they can still
model appearance variations due to interactions be-
tween specular reflectance and high surface curvature.

Given a parameterization s(u, v) for the points on
a surfel, the bump map replaces the point’s original
normal n in Eq. (6) with a modified normal, ñ(u, v)
(Fig. 3(b)):

ñ(u, v)
def= n + [su sv]

[
κuu κuv

κuv κvv

][
u − uc

v − vc

]
, (13)

where uc, vc, κuu, κuv, κvv are the parameters that de-
fine the bump map. This map effectively allows a
quadratic variation in the surface normal across the sur-
fel. This normal variation is consistent with that of a
quadratic surface patch that touches the surfel’s plane
at a point with surfel coordinates (uc, vc). The three pa-
rameters κuu, κuv, κvv control the apparent curvature of
that patch and are known as the elements of the Gauss
map differential, dn (do Carmo, 1976). Given a sur-
fel parameterization s, the bump map is determined by
the five parameters specifying Eq. (13). This leads to
a six-parameter description which explicitly encodes
the surfel’s parameterization in addition to the map
itself:6,7

B def= 〈su, uc, vc, κuu, κuv, κvv〉. (14)

3.4. 3D Motion Component

To represent dynamic scenes, we augment our surfel
shape representation with a smooth motion field that
assigns an instantaneous 3D velocity to every surfel
point. Recall that s(u, v) is the surfel’s parameteri-
zation at time t = t0. We describe the evolution of
the surfel’s shape in a small temporal neighborhood
[t0 − δt, t0 + δt] around t0 by extending the surfel’s
static parameterization into the time domain:

ŝ(u, v, t)
def= s(u, v) + (t − t0) (ŝt + uŝut + vŝvt ),

(15)

where the time derivatives ŝt , ŝut , and ŝvt are evaluated
at time t0. Intuitively, the vector ŝt captures the surfel’s
instantaneous translation while the vectors ŝut and ŝvt

capture all other motion-induced linear transformations
of the surfel’s plane. As such, the vectors ŝt , ŝut , ŝvt can
represent arbitrary translations, rotations, shearing and
scaling of a surfel, but do not capture second-order ef-
fects due to changes in surface curvature. The resulting
motion representation consists of the ten parameters
defining these vectors and the neighborhood of t0:

M def= 〈δt, ŝt , ŝut , ŝvt 〉. (16)

Together, the shape, reflectance, bump map, and mo-
tion components of a surfel give rise to a 25-parameter
planar and spatially-bounded scene representation with
|S| = 7, |R| = 2, |B| = 6 and |M| = 10. As such, our
surfel representation and, in particular, the bump map
representation can be thought of as a compromize be-
tween the need to account for geometries, appearance
variations and motions exhibited by non-planar scenes
and the desire to minimize the number of required pa-
rameters and keep computations such as re-projection
and image warping as simple as possible, i.e., modeled
by homographies (Section 4).

4. Surfel Photo-Consistency

Our goal is to recover a surfel-based scene descrip-
tion from a set of input video sequences. In order to
formalize this operation mathematically, we (1) rely
on picture invariants to define the constraints that ev-
ery valid solution to the reconstruction problem must
satisfy, and (2) show that there always exists a surfel-
based scene description that satisfies these constraints
arbitrarily well.
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Figure 4. Pixel correspondences induced by a surfel point s. The
warp function Wr→i ( ) that maps pixels in the reference view to
pixels along viewpoint ci is a homography.

4.1. Static Photo-Consistency

Every point s on a 3D reconstruction of the scene in-
duces a set of pixel correspondences between the input
views in which it is visible (Fig. 4). Since the colors at
s’s projection in the input views define a Static Picture
Invariant when s is a point on the scene’s true surface,
we require that every point on a valid scene reconstruc-
tion satisfies this constraint as well.

In particular, let s be a surfel point that has an
assigned normal ñ, an assigned specular radiance
βS(s, ñ, ·, ·), and whose visibility from all cameras and
light sources is known. Observation 1 tells us that in
order to conform to the invariance constraints satis-
fied by the scene’s true points, the color difference
I Dinv
i

def= Ii (s) − I S
i (s) must be constant for all view-

points ci where s is visible. This leads to the follow-
ing definition for the photo-consistency of a surfel. In-
tuitively, this definition assesses the constancy of the
Static Picture Invariant with respect to a reference view
cr in which the surfel is visible:

Definition 2 (Static Surfel Photo-Consistency). A
surfel whose static properties are defined by the tu-
ple 〈S,R,B〉 is photo-consistent with the input views
if and only if the error metric E1(S,R,B) is zero:

E1(S,R,B)
def= 1

A1

∫
S

N∑
i=1

vis(cr , s) vis(ci , s)

× [
I Dinv
i (s) − I Dinv

r (s)
]2

ds, (17)

where S is the set of 3D surfel points and A1 is a nor-
malizing factor equal to

∫
S

∑N
i=1 vis(cr , s) vis(ci , s) ds.

Since there is a one-to-one correspondence between
surfel points and pixels in the input views, the invariant
metric E1(S,R,B) can be expressed in terms of the
pixels at the projection of a surfel. This re-formulation
allows us to evaluate E1(S,R,B) without having to
explicitly sample 3D points on the surfel itself:

E1(S,R,B) = 1

A1

∫
Q

N∑
i=1

vis(cr , q) vis(ci , Wr→i (q))

× [
I Dinv
i (Wr→i (q)) − I Dinv

r (q)
]2

dq,

(18)

where Q is the set of pixels in the surfel’s foot-
print along view cr ; Wr→i ( ) is the warp func-
tion that maps pixels in cr to pixels in ci (Fig. 4);
vis(· , q) is defined in terms of the visibility of the
3D point projecting to pixel q; and A1 is equal to∫

Q

∑N
i=1 vis(cr , q) vis(ci , Wr→i (q)) dq.

Since the shape of a surfel is always planar, the pixel
correspondences it induces between the input views can
be expressed as homographies (Appendix A). The met-
ric E1(S,R,B) can therefore be thought of as the sum-
of-square-differences of pixels in a reference picture-
invariant image I Dinv

r , and in its homography-warped
counterparts, I Dinv

i , i = 1, . . . , N . Moreover, since
these patches are identical to the input images when the
scene is known to be Lambertian (i.e., when βS = 0),
the metric is essentially a generalization of warp-based
metrics that have been previously proposed for 2D im-
age registration (Irani and Peleg, 1991; Szeliski, 1996;
Kanatani and Ohta, 1999), motion estimation (Szeliski,
1999; Irani et al., 1997), and stereo (Faugeras and
Keriven, 1998; Loop and Zhang, 1999) in Lambertian
settings.

4.2. Dynamic Photo-Consistency

The notion of dynamic photo-consistency for 3D points
and surfels follows as a straightforward generalization
of the static photo-consistency constraint. In particular,
let q be the projection of a 3D point s at time t0 along a
viewpoint cr , and let Wt0→t

r→i (q) be the pixel correspond-
ing to q at time t from viewpoint ci . Observation 2
tells us that in order to conform to the scene’s picture-
invariant properties, every pixel Wt0→t

r→i (q) must define
a color I Ainv

i,t that is constant across all viewpoints and
all time instants where s is visible. This leads to the
following metric for quantifying the dynamic photo-
consistency of an entire surfel:
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Definition 3 (Dynamic Surfel Photo-Consistency). A
surfel D= 〈t0,S,R,B,M〉 is photo-consistent with
the input views if and only if the error metric
E2(S,R,B,M) is zero:

E2(S,R,B,M)

def= 1

A2

∫
T

∫
Q

N∑
i=1

vis(cr , q) vis
(
ci , Wt0→t

r→i (q)
)

× [
I Ainv
i,t

(
Wt0→t

r→i (q)
) − I Ainv

r,t0 (q)
]2

dq dt, (19)

where Q is the set of pixels on the surfel’s footprint
along view cr at time t0; the interval T = [t0 − δt, t0 +
δt] is defined by the surfel’s temporal extent, δt ;
Wt0→t

r→i ( ) is the warp function that maps pixels in cr

at time t0 to pixels in ci at time t ; and A2 is equal to∫
T

∫
Q

∑N
i=1 vis(cr , q) vis(ci , Wt0→t

r→i (q)) dq dt .

A useful consequence of our dynamic surfel rep-
resentation is that the space of 3D motions repre-
sentable by a surfel’s motion component is identical
to the space of plane-to-plane homographies. This al-
lows us to use a common computational framework for
assessing static and dynamic photo-consistency, based
on appropriately-defined homography warps.

4.3. Sufficiency of the Surfel-Based
Scene Representation

While the photo-consistency metrics defined above tell
us when a surfel is photo-consistent, they do not tell us
anything about whether photo-consistent surfels can
indeed be found for every scene or scene point. The
answer to this question is not obvious because a surfel-
based scene description is only an approximation of the
scene’s true shape, reflectance, and motion properties.
Hence, even though the metrics E1 and E2 are identi-
cally zero when evaluated at points on the scene’s true
surface(s), they are not zero, in general, when eval-
uated at non-surface points. Importantly, a negative
answer to the question would imply that our surfel-
based representation scheme is not powerful enough to
generate photo-consistent reconstructions of arbitrary
scenes. Fortunately, the following theorem establishes
the sufficiency of our scheme in the static case. Intu-
itively, Theorem 1 says that we can almost always de-
fine a surfel whose deviation from photo-consistency
falls within an arbitrarily-small error bound δ:

Theorem 1 (Surfel Approximation Theorem). For ev-
ery scene point p that does not project to a shadow
boundary or an occlusion boundary there exists a sur-
fel shape componentS = 〈o, ε, n, d〉 and components
R,B such that p is contained in the ball B(o, ε) and
E1(S,R,B) < δ.

See Appendix B for a proof as well as a theorem
that gives a precise description of what the spatial ex-
tent ε must be to achieve consistency for a given scene
(Theorem 4). The Surfel Approximation Theorem is
important in our analysis for three reasons. First, it tells
us that individual surfels can reproduce to an arbitrary
degree of consistency the scene’s appearance in the
neighborhood of almost every scene point.8 Second,
because the theorem’s proof is constructive, it provides
a detailed study of the inter-relationship between the
photo-consistency error bound δ, the scene’s local sur-
face geometry at p, the scene’s albedo function, and the
surfel’s spatial extent ε. As such, it makes explicit the
class of surfels that can represent a specific scene neigh-
borhood in a way that preserves photo-consistency, and
the class of scenes that can be reconstructed from a
given family of surfels. Third, it suggests that we can
construct a global photo-consistent representation of
the scene by defining a discrete collection of surfels,
each of which approximates the scene’s surface(s) in a
well-defined spatial neighborhood.

While in theory we can make the spatial extent of
a surfel arbitrarily small to ensure photo-consistency,
in practice a surfel’s footprint in the input views
must contain enough pixels to allow estimation of its
25 parameters. We consider the problem of building
such surfel-based scene approximations in the next sec-
tion and present experimental results with real scenes
in Section 8.

5. Shape and Reflectance by Surfel Sampling

At the heart of our approach lies the problem of com-
puting a set of surfels that cover the scene’s visible
surfaces. Since the scene’s shape is unknown, we must
answer three questions: (1) how do we identify the re-
gions of space that contain surface points, (2) how do
we determine the cameras and light sources that reach
those regions, and (3) how do we use the input images
to fit surfels to these regions?

Let V init be a known and finite volume that contains
the scene to be reconstructed, and let B1, . . . , BV be a
finite set of ε-balls whose union is V init. To answer the
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above questions, we reduce global shape computation
to the problem of performing a space query in a ball
B = B(o, ε) and introduce a computational framework
called surfel sampling to perform the query:

Definition 4 (Space Query). (1) Determine whether B
intersects the scene’s volume and (2) if it does, compute
a normal n, a distance d , and reflectance and bump
map components R,B so that the surfel defined by
S = 〈o, ε, n, d〉 and R,B is photo-consistent with the
input views.

Space queries require assessing a surfel’s photo-
consistency, an operation which requires knowing the
visibility relationship between points in B and the cam-
eras and light sources. In the following we assume that
the visibility function vis(·, s) is known for every point
s ∈ B and focus on how to answer the first and third
questions we posed above. We return to the question of
how these visibilities can be determined in Section 7.

5.1. Space Queries by Surfel Sampling

The set of all surfels in a ball B(o, ε) is an 11-
dimensional subset of the space of shape, reflectance,

Figure 5. Behavior of the metric E1(S,R,B) in the neighborhood of a planar scene patch, outlined in black, on the book shown in (a). Note
that the book cover exhibits a strong specularity for one of the two input cameras shown, due to the configuration of the scene’s two light
sources. (b) The true 3D position and orientation of the patch was measured in advance to obtain a ground-truth value for S∗. The bump map BI

represents the identity map, i.e., the map that assigns the surfel plane’s normal, n, to every point on the surfel. (c) A plot of E1 with R computed
according to Section 5.2, with 100 sample points per surfel (P = 100). Note that the global minimum of E1 occurs at S = S∗ and is sharply
lower than the rest of the function, suggesting that global minimization of E1 will lead to accurate shape recovery despite the patch’s strongly
specular appearance. Also note the deep local valley far from S∗, which suggests that global minimization of E1 is difficult even when all but
two of the surfel’s shape parameters are known exactly.

and bump map components. Surface sampling con-
ducts an organized exploration of this space in search
of the globally optimal surfel, 〈S∗,R∗,B∗〉, i.e., the
surfel in B that minimizes the static photo-consistency
metric, E1:

〈S∗,R∗,B∗〉 def= arg min
n

d<ε

[
min
R,B

E1(S,R,B)
]
, (20)

with S = 〈o, ε, n, d〉. Once this surfel is identified, the
value of the photo-consistency metric is used to either
reject the ball as empty space (i.e., B does not intersect
the scene volume), or to accept the optimal surfel as
a valid local approximation of the scene points in B.
The Surfel Approximation Theorem of Section 4.3 tells
us that such a global minimization inside B(o, ε) is
sound mathematically, i.e., it is guaranteed to generate
to a photo-consistent scene approximation if the ball
intersects the scene and ε is sufficiently small.

Querying space by minimizing E1 is difficult for
three reasons. First, a local minimization of E1 is not
sufficient to decide if B is empty because, in prac-
tice, the value of E1 at a local minimum is not a good
predictor of its value at the global minimum (Fig. 5).
Intuitively, this is because even a small deviation from
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a surfel’s optimal position and orientation will corrupt
stereo correspondences and specularity computations,
making it hard to compute a picture invariant from the
input images. Second, the metric exhibits deep local
minima in practice, making it impossible to guaran-
tee global minimization using standard methods (e.g.,
Levenberg-Marquardt (Press et al., 1988)). Third, an
exhaustive search of 〈S,R,B〉-space is practically im-
possible because of its high dimensionality.

To overcome these difficulties, the Surfel Sampling
Algorithm combines a coarse sampling of 〈S,R,B〉-
space along specific dimensions with a sequence of
linear and non-linear optimization steps that “explore”
the neighborhood of each 〈S,R,B〉-sample. The al-
gorithm’s strategy is to rely as much as possible on
linear optimization to generate and screen an initial
set of “seed” samples since it is computationally much
less expensive than non-linear optimization or explicit
sampling.

A graphical depiction of the Surfel Sampling Algo-
rithm is shown in Fig. 6. The order and mathematical
formulation of the minimization steps are of fundamen-
tal importance to the method because they determine

Figure 6. The Surfel Sampling Algorithm. Boxed parameters indicate the parameters to which sampling or optimization is applied. The
optimization Steps 4, 5, and 6 are described in Sections 5.2, 5.3 and 5.4, respectively. Note that Step 4 computes a set of discrete albedo values
for the surfel as a by-product of the step’s linear optimization method. These values are used for optimizing the surfel’s bump map in Step 5 but
are not part of the surfel’s representation and are not used for measuring surfel photo-consistency.

the “size” of the neighborhood that can be explored
from a single sample. By choosing them appropriately
we can therefore minimize the number of dimensions
that have to be explicitly sampled as well as the density
of the samples themselves. We consider each of these
steps below.

5.2. Linear Reflectance Estimation

Steps 1–4 of the Surfel Sampling Algorithm are
directed toward efficiently searching for 〈S,R,B〉-
samples that may be near the globally optimal surfel in
B(o, ε). This is done by (1) generating a sample S of
linear shape parameters, (2) generating a value for the
specular exponent, k, (3) using a linear method to com-
pute an assignment for the surfel’s specular coefficient,
f , and (4) rejecting all resulting 〈S,R,B〉-samples
that produce high values for the photo-consistency
metric E1.

More specifically, we observe that the scene image
formation model described by Eq. (4) becomes linear
when the surfel’s shape component, specular exponent,
and bump map are known. For a point s = s(u0, v0)
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on the surfel, this observation leads to a linear equa-
tion with only two unknowns—the point’s albedo,
ρ(u0, v0), and the surfel’s specular coefficient, f :

Ii (s) = aρ(u0, v0) + b f, (21)

where Ii (s) is the pixel color at s’s projection in the i-th
camera and a, b collect the known terms of Eq. (4). For
P surfel points projecting to a total of Q pixels in the
input views, Eq. (21) gives rise to a linear system of Q
equations and P+1 unknowns, corresponding to f and
the albedo values, ρ1, . . . , ρP , of the individual surfel
points. In practice, we form the system by assigning an
identity bump map to the surfel and uniformly sampling
the surfel’s parameterization, s(u, v), in the interior of
the ball B. This results in a sparse linear system that is
solvable in O(Q) steps.

Since S and k must be known to formulate the linear
system, we generate them through sampling. We first
uniformly sample the 2D space of surfel normals so that
neighboring normals form an angle that is less than a
constant ψ , and then uniformly sample the 1D space of
distances, d, from the center of B(o, ε). These two sam-
pling steps span the entire space of planes in B (Steps 1
and 2 in Fig. 6). A coarse sampling of the space of spec-
ular exponent values completes the set of parameters
needed for linear reflectance estimation. In our exper-
iments, reported in Section 8, a total of about 20,000
〈S,R〉-samples are generated for each space query.
Each one of these samples is then accepted for fur-
ther refinement only if its photo-consistency is among
the K -best in the generated sample set, where K is a
pre-determined constant (usually between 5 and 10).

5.3. Bump Map Estimation

Linear reflectance estimation assumes that scene points
in B can be approximated by a plane. Ignoring cur-
vature when the scene in B is curved will lead to
an incorrect (i.e., sub-optimal) surfel solution since
photo-consistency cannot be ensured. This is especially
important for non-diffuse scenes, where the strong ef-
fect of surface curvature on the appearance of specular-
ities is well known (Blake and Bulthoff, 1991). To over-
come this difficulty we note that when the orientation of
a surfel and the positions of the light sources are known,
we can reason directly about the presence or absence of
specularities and about how, by interacting with surface
curvature, they affect a surfel’s appearance.

We use this idea in two ways. First, we slightly mod-
ify the linear reflectance estimation step of Section 5.2

to make it robust to curvature-induced effects. This
is accomplished by estimating the surfel albedos
ρ1, . . . , ρP from a subset of its input views, i.e., those
views where curvature-induced effects due to a strong
specular highlight cannot be present because of the re-
lation between their viewpoint, the surfel normal, and
the light source positions (Fig. 7(a)). Second, we as-
sign a bump map to every surfel that exhibits a specu-
lar highlight in at least one input view. This allows us
to build photo-consistent surfel-based reconstructions
of curved, specular scenes that would not have been
otherwise possible9 (Section 8).

Our bump map estimation procedure is based on
the following theorem. Let S = 〈o, ε, n, d〉 be the
shape component of a surfel and let ρ1, . . . , ρP be the
known albedos of P surfel points s1, . . . , sP , respec-
tively. Theorem 2 establishes an explicit relation be-
tween the color at the projection of a point s j and the
surfel’s optimal bump map parameters, i.e., the param-
eters that reproduce this color exactly:

Theorem 2 (Linear Bump Map Estimation Theorem).
Suppose that (1) the scene’s specular exponent is con-
stant in the ball B(o, ε) and has a known value k, (2)
the contribution of specular reflectance to every color
Ii (s j ) in the i-th view is negligible for all but one light
source ll , and (3) the bump map origin, defined by
surfel coordinates (uc, vc), is chosen so that the ray
through s(uc, vc) and ci is along the direction of per-
fect specular reflection for light source ll . The differ-
ence between color Ii (s j ) and the color predicted by the
surfel’s bump map and reflectance models is zero for
all j = 1, . . . , P if and only if the following equation
is satisfied for all such j

(
vout

c

)T
[
κuu κuv

κuv κvv

]
A jc

[
κuu κuv

κuv κvv

](
vin

c

) − bi j f − 1
k

= −1 + e(ε), (22)

where

A jc = 2

[
u j − uc

v j − vc

]
[u j − uc v j − vc],

vout
c =

[
su

T

sv
T

]
dout

c , vin
c =

[
su

T

sv
T

]
din

c ,

bi j =
[

Ii (s j ) − I Dinv
i (s j )

Ll(s j )

] 1
k

,

lim
ε→0

e(ε) = 0,

s j = s(u j , v j ),
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Figure 7. Curvature compensation. (a) Errors due to planar approximations of a curved scene. The static picture invariant at s’s projections
will be erroneously estimated for two reasons. First, these projections are projections of two distinct scene points p1, p2. Second, the normal of
scene point p1 is n′, not n. For the specular viewpoint c1, the prediction error in Eq. (4) is dominated by the error in n. If p1 has a large specular
exponent, however, the actual contribution of specular reflectance to q’s color will be negligible. To increase the robustness of estimating the
albedo samples, ρ1, . . . , ρP , we ignore near-specular views of a surfel, i.e., those where arccos[CS(n, dout, din)] < ψmin for at least one surfel
point and one light source. The angle ψmin is determined from the surfel’s (known) specular exponent. (b) Appearance prediction results with
and without curvature compensation for the specular “vase” scene in Fig. 25. Shown are three views of a 10 × 10 set of samples from a single
surfel (left column) and the predicted contributions to these views from each of the surfel’s reflectance components (right column). Note the
significant specular color errors in Step 4, where the surface normal is the same for all surfel points.

and dout
c , din

c are the unit orientations of the rays
s(uc, vc)ci and s(uc, vc)ll , respectively.

See Appendix C for a proof. Intuitively, Theorem 2
tells us that when the scene generates a strong spec-
ular highlight at a viewpoint ci and the surfel we use
to approximate the scene is sufficiently small, we can
compute a near-optimal bump map by solving a lin-
ear system with unknowns κ2

uu , κuuκuv , κ2
uv , κuvκvv ,

κ2
vv , κvvκuu and f − 1

k . The only requirement is that the
surfel’s position, orientation and specular exponent ap-
proximate those of the true scene. In practice, we obtain
this system with the help of the previously-computed
surfel shape and reflectance parameters S,R and the
albedo values, ρ1, . . . , ρP .

5.4. Non-Linear Shape and Reflectance Estimation

While our linear estimation methods assign reflectance
and bump map components to a surfel of known shape
S, the surfel’s position and orientation is determined
strictly through sampling. Hence, the density of
samples in 〈S〉-space determines the degree to which
a surfel can approximate the shape of the true scene.
This leads to sub-optimal surfel solutions. In order to
further refine the parameters of a computed 〈S,R,B〉-

sample without densely sampling 〈S〉-space, we
use the sample 〈S,R,B〉 as a starting point in a
non-linear minimization stage. This stage relies on
Levenberg-Marquardt’s optimization algorithm to
minimize the static photo-consistency metric E1 over
all surfel parameters except those defining the specular
exponent k and the bump map B.10

The 〈S,R,B〉-sample returned from the non-linear
minimization stage is accepted as a candidate solution
to the space query if E1(S,R,B) is less than a bound
δnlin. This bound can be determined by taking into ac-
count image noise, the sampling densities in Steps 1–3
of the Surfel Sampling Algorithm, and the scene re-
constructibility conditions that result from Theorem 1
(Appendix B). Once all such candidates have been
identified, the candidate with the smallest photo-
consistency error is returned as the solution to the space
query. If no candidates exist, i.e., the metric E1 is larger
than δnlin for all computed surfels, the ε-ball defined by
the query is considered to be empty of scene points.

6. Dynamic Surfel Reconstruction

Any general approach to the problem of reconstruct-
ing dynamic scenes must inevitably account for the
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very complex interactions between 3D shape, appear-
ance, motion and illumination (e.g., changing shape,
moving shadows and specularities, dynamic illumina-
tion effects due to changes in surface orientation, mov-
ing occlusion boundaries, etc). As a first step toward
this goal, we use an approach that is based on two
basic principles. First, even though the above interac-
tions are complex and non-linear, they can be resolved
when an estimate is available for the scene’s instan-
taneous 3D shape and reflectance. Second, temporal
variations in a scene’s appearance do not only con-
strain the 3D motion of the scene—they strongly con-
strain the scene’s instantaneous 3D shape as well. We
apply these two principles for dynamic surfel recovery
by (1) using a recovered surfel-based description of the
scene’s instantaneous global shape to identify all cam-
eras, light sources, and input pixels that can contribute
to a surfel’s 3D motion estimate, (2) developing a new
direct linear method that uses this information to as-
sign a motion component, M, to an 〈S,R,B〉-sample,
and (3) using an additional, non-linear estimation step
that jointly refines S,R and M to ensure the dynamic
photo-consistency of the resulting dynamic surfel.

6.1. Direct Linear 3D Motion Estimation

Our linear estimation approach is based on the observa-
tion that when a point on a Lambertian scene is not on a
shadow boundary or an occlusion boundary and when
the point is distant from the scene’s light sources, only
one factor can affect the point’s dynamic appearance—
a change in its surface orientation. Here we generalize
this observation in order to handle scene points that are
not diffuse and in order to recover their translational and
non-translational 3D motion components. To achieve
this, we relate a point’s 3D motion to the variation of its
Static Picture Invariant in a given view, which is equal
to the point’s color in the Lambertian case.

Specifically, suppose p(t) = x̂(u0, v0, t) is a moving
surface point that does not project to a shadow bound-
ary or an occlusion boundary at time t0. The total time
derivative of p’s Static Picture Invariant, I Dinv

i (p), in
view i satisfies the following two equations:

d

dt
I Dinv
i (p) = ρ(u0, v0) d(p)T ∂n
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∂t
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where the total derivative is evaluted at t0, partials are
evaluated at (u0, v0, t0), and d(p) is given by

d(p) =
L∑

l=1

Ll(p)
ll − p

‖ll − p‖ . (25)

Equation (23) is obtained by substituting Eq. (2) into
Eq. (5) and differentiating the result with respect to
time. It tells us that if we subtract the contribution
of specular reflections from p’s projection in the i-
th camera, the resulting color change can have only
two causes—a change in p’s surface orientation or a
change in its position relative to the light sources. Equa-
tion (24) goes a step further, allowing us to relate the
color and intensity variations at a specific image pixel
to the 3D translation of p and to the deformation and re-
orientation of the scene in p’s neighborhood. It gener-
alizes the optical flow constraint equation (Horn, 1986)
in order to capture the effects of changes in surface ori-
entation relative to the light source(s) and to account
for the scene’s non-Lambertian reflectance.

To use Eqs. (23) and (24), we concentrate on the case
where the inter-frame translation of point p is much
smaller than its distance from the light sources:11

Observation 3 (Motion-Induced Variation of the Static
Picture Invariant). If all of the scene’s light sources
are located at infinity and defined by the unit vectors
din

1 , . . . , din
L , the following equality holds:

ρ(u0, v0) d∞(p)T ∂n
∂t

=
[

∂

∂p
I Dinv
i (p)

]
[x̂t + u0x̂ut + v0x̂vt ] + ∂

∂t
I Dinv
i (p)

(26)

with

d∞(p) =
L∑

l=1

Ll(p)din
l .

Observation 3 follows from Eqs. (23) and (24) by
noting that d∞(p) is the limit of d(p) when all light
sources are at infinity and noting that the temporal
derivative of d∞(p) in Eq. (23) is zero. The observation
leads directly to the following theorem which allows
us to formulate the recovery of a surfel’s 3D motion
parameters as a direct linear estimation problem. In
particular, let p j , j = 1, . . . , P be scene points with



190 Carceroni and Kutulakos

known albedos ρ j that are contained on a planar sur-
face region with normal n = xu ∧xv at time t0, and that
have coordinates (u j , v j ) with respect to the surface
parameterization x̂:

Theorem 3 (Linear 3D Motion Estimation Theorem).
The vectors x̂t , x̂ut , x̂vt describing the plane’s 3D mo-
tion satisfy the Q × 9 system


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lim
t→t0

e(t) = 0Q×1, (27)

where Q is the total number of pixels to which the points
p j project, and ai j is the row contributed to the system
from the projection of p j in the i-th camera:
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See Appendix D for a proof. Theorem 3 shows that
we can recover a surfel’s 3D motion parameters di-
rectly from the Static Picture Invariants in the input
views by treating the surfel as a local approximation of
the scene’s true 3D surface, defining P points on the
surfel’s plane and computing their albedos, and solving
the linear system in Eq. (27) with e(t) = 0Q×1.

Besides allowing us to compute 3D motion esti-
mates, Theorem 3 has two important practical conse-
quences. First, it allows us to compute a surfel’s mo-
tion by simultaneously integrating all pixels in all input
views to which the surfel projects. In general, when a
surfel is visible from multiple cameras the system will
be highly over-determined, making the estimation less
sensitive to image noise. Second, it allows us to use
singular value decomposition (SVD) to identify those
3D motion parameters of a surfel that can be estimated
reliably from the input views. This is particularly use-
ful since real scenes frequently contain regions where
motion information cannot be extracted because of the
aperture problem (Horn, 1986).

In practice, we use Theorem 3 to compute a surfel’s
motion with the help of a coarse-to-fine estimation al-
gorithm that consists of six steps: (1) sample P points
on a surfel and compute their albedos (Sections 5.2 to
5.4), (2) compute the Static Picture Invariants defined
by consecutive frames of the input videos (Section 2.3),
(3) build the Gaussian pyramids (Burt and Adelson,
1983) of these images, (4) use SVD analysis on the lin-
ear system of Eq. (27) to evaluate which, if any, of the
surfel’s motion parameters can be reliably estimated,12

(5) solve the system for those parameters at level h of
the pyramid, and (6) refine the motion parameters by
repeating these steps for level h − 1.

The above algorithm can be thought of as both a
generalization and a restriction of previous work on
physically-based 2D flow estimation (Haussecker and
Fleet, 2000; Negahdaripour, 1998). On one hand, exist-
ing physically-based approaches for recovering the mo-
tion of specular and/or diffuse scenes attempt to recover
a parametric 2D flow field from a single video stream,
a problem that is inherently under-constrained. This
leads to flow fields that are consistent with the input se-
quence but do not describe the scene’s true 3D motion.
Unlike these techniques, our multi-view generalization
leads to a well-posed 3D estimation problem whose so-
lution, as indicated by Theorem 3, corresponds to the
scene’s true 3D motion. On the other hand, our linear
estimation approach works by effectively discarding
the contribution of specular reflectance from the in-
put views before 3D motion estimation is performed.
Since prominent specularities are strong cues about the
scene’s 3D shape and motion, this information ought
to be used in the shape and motion estimation process,
as in existing 2D techniques (Negahdaripour, 1998),
rather than discarded. This is a topic of future work.

6.2. Non-Linear 3D Motion, Shape
and Reflectance Estimation

An increasing body of evidence suggests that joint
estimation of 3D shape and motion parameters can
significantly improve shape and motion computations
(Vedula et al., 2000; Carceroni and Kutulakos, 1999a,
1999b). This is because temporal variations due to 3D
motion provide additional shape constraints that can-
not be captured by stereo and reflectance information
alone. Here we apply this principle by jointly opti-
mizing a surfel’s 3D shape, reflectance and motion.
To achieve this, we apply Levenberg-Marquardt opti-
mization to minimize the dynamic photo-consistency
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metric, E2(S,R,B,M) (Section 4.2). The minimiza-
tion is performed over the parameters of the surfel’s 3D
shape component,S, the surfel’s specular factor, f , and
those parameters of its 3D motion component that were
determined to be reliable through SVD analysis.

7. Global Scene Reconstruction

Our space query formalism and its spatio-temporal ex-
tension have two main characteristics. First, they are
designed to solve a local reconstruction problem, i.e.,
that of computing the shape, reflectance and motion
properties of the scene in a small 4D space-time neigh-
borhood. Second, they assume that the visibility of all
points inside that neighborhood is known with respect
to the input cameras and light sources. To generate a
global 4D scene description we therefore need to an-
swer three questions: (1) how can we use space queries
to compute a global instantaneous description of the
scene’s shape and reflectance at every time instant,
(2) how can we resolve the instantaneous visibility of
3D points, and (3) how can we recover a global instanta-
neous 3D motion field that describes the scene’s motion
at every time instant? We answer these questions within
the context of a volumetric reconstruction framework
based on space carving (Kutulakos and Seitz, 2000).

Let V init be a known and finite volume that contains
the scene as an unknown sub-volume. We represent
V init as a finite collection of voxels v1, . . . , vV and use
space queries to determine whether or not a voxel in
this collection intersects the scene volume. For com-
putational simplicity, we restrict the spatial extent of a
space query to be a single voxel vm in this collection
and use space queries to fit at most one surfel to vm .
Using this representation, instantaneous shape recon-
struction consists of repeatedly applying space queries
to individual voxels in the volume, and leads to recon-
structions that contain at most V distinct surfels.

In order to compute the visibility function vis(·, p)
for every point p inside a voxel, we observe that we can
compute an approximation to this function by applying
space queries to V init’s voxels in a specific order. This
observation, initially exploited in Kutulakos and Seitz
(2000), Seitz and Dyer (1999), Szeliski and Golland
(1998) and Langer and Zucker (1994), is based on the
idea that if we iteratively “carve away,” voxels from
V init, we guarantee that the visibility set of all surface
points on the remaining volume is monotonic, i.e., that
the set of cameras (or light sources) from which a point
is visible can only increase. Here we use this observa-

tion by (1) carving from V init every voxel whose space
query determines that it does not intersect the scene,
(2) applying a space query only to voxels on the sur-
face of the uncarved subset in V init, (3) approximating
vis(ci , p) for a point p in a voxel by a binary func-
tion that is one if and only if the segment ci p does not
intersect an uncarved voxel or a previously-computed
surfel,13 and (4) updating this function after each carv-
ing operation.14

To reconstruct the scene’s instantaneous 3D motion
at every time t , we use the instantaneous description of
the scene’s shape and reflectance to assign a motion
component to every reconstructed surfel according
to Section 6. The above considerations lead to the
following algorithm for recovering a surfel-based
description of a dynamic scene from multiple views:

Dynamic Surfel Reconstruction Algorithm

Step 1. Initialize V init to a volume containing the true
scene.

Step 2. (Instantaneous Shape & Reflectance Recovery
for every frame t)

Step 2a. Initialize the volume, V = V init, and the
surfel collection, �t = { }.

Step 2b. Repeat the following steps for voxels vm ∈
Surface(V) until no voxels are carved away:

• For every 3D point p in vm , define vis(ci , p) to be
one if and only if the line segment ci p does not
intersect a voxel in V − {vm} or a surfel in �t .

• If there are 3D points in vm that are visible by at
least two cameras:

1. Set V = V − {vm}.
2. Assign to vm the reference camera r that maxi-

mizes vm’s visible projected area (i.e., the area
of vm’s projection not occluded by any voxels
in V or surfels in �t ).

3. Perform a space query on vm ; if the query
returns a sample 〈S,R,B〉, set �t = �t ∪
{〈S,R,B〉}.

Step 3. (Instantaneous Shape, Reflectance & Motion
Recovery for every frame t). Repeat the following
steps for every tuple 〈S,R,B〉 ∈ �t :

Step 3a. Compute S’s visibility from the light
sources at t and t + 1. If this visibility changes
between the two frames, do not estimate the
surfel’s motion and continue with a new surfel.
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Figure 8. Our 7-camera acquisition rig (cameras circled).

Step 3b. Compute the set of cameras from which S
is visible in both frames t and t + 1.

Step 3c. Compute the Static Picture Invariants I Dinv
i,t

and I Dinv
i,t+1 and the Dynamic Picture Invariants

I Ainv
i,t and I Ainv

i,t+1 in the neighborhood of S’s
projection.

Step 3d. Use the above information to compute a
dynamic surfel 〈S ′,R′,B,M〉 that assigns a
motion component M to the surfel and refines
the surfel’s shape and reflectance components.

Figure 9. The “T-shirt” sequence: a T-shirt is “punched” from below, undergoing an upward motion and deformation. Three out of ten frames
and three out of seven views are shown. Each row corresponds to a different camera viewpoint.

8. Experimental Results

To demonstrate the applicability of our approach we
performed experiments with a number of complex, dy-
namic real scenes. Multi-view sequences were acquired
with a rig of seven synchronized, progressive-scan
Pulnix TCM-9700 color cameras (Fig. 8). The cameras
allowed simultaneous observation of an approximately
30 × 30 × 30 cm working volume. A sequence of ge-
ometric and radiometric calibration steps ensured that
the projection of points within the working volume was
accurate to approximately 0.5 pixels and that color and
intensity agreement between cameras was on the or-
der of 1–5 gray levels per channel. Scene illumination
consisted of two point light sources approximately 3 m
away from the scene, whose 3D positions were recov-
ered by adapting the method in Bouguet and Perona
(1998). We used color images for all computations,
treating each band as an independent image.

Our method was applied to a variety of 7-view se-
quences ranging from 10 to over 100 frames. The
four examples shown here were chosen to illustrate
its performance for scenes of dramatically differ-
ent shape, reflectance, and motion dynamics: (1) the
“T-shirt” sequence involves the manual deformation of
a densely-textured, near-Lambertian and fairly thick
fabric (Fig. 9), resulting in a very smooth stretching
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deformation of the shirt’s surface and no self-shadows
or self-occlusions; (2) the “flag” sequence involves
the rapid shaking of a very thin near-Lambertian flag
with both highly-textured and sparsely-textured re-
gions (Fig. 11)—the flag’s low internal cohesion in-
duced a very dramatic 3D shape change that caused
the emergence of self-occlusions and self-shadows, in-
volved little or no stretching deformation, and induced
a motion field that varied significantly over the flag’s
surface in both magnitude and direction; (3) the “neck”
sequence illustrates the approach’s behavior on images
of the body, where the surface has non-Lambertian re-
flectance and contains many regions with little texture,
and where self-occlusions and complex deformations
occur during the neck’s motion (Fig. 21); and (4) the
“vase” sequence involves the rigid motion of a highly-
specular object (Fig. 25).

In all of the above examples, the working volume was
divided equally into a 16×12×8 array of cells for per-
forming space queries. Since every cell can have at most
one surfel describing it, this limited the “resolution”
of our reconstructions to a maximum of 1408 surfels.
Only two parameters of the algorithm were changed
across sequences—minor adjustments to the bounding
box and adjustments to the variance threshold for surfel
rejection. We relied on the Phong reflectance model for
all sequences (Section 2.2) and used exactly the same
rates for sampling surfel space. Specifically, orientation
sampling (Step 1 of the Surfel Sampling Algorithm)
was achieved by choosing 193 uniformly-spaced sam-
ples of the Gaussian hemisphere that faced the cam-
eras. This corresponded to approximately 10 degrees
between neighboring samples for the surfel normal.
The distance between z-samples was 0.5 mm (Step 2
of the Surfel Sampling Algorithm), and the same four
discrete values (1.5, 6, 25 and 100) were used for the
cosine lobe exponent, k.

8.1. Shirt Sequence

Figure 10 shows reconstruction results for the “shirt”
sequence. From the point of view of shape recovery, the
scene’s Lambertian reflectance and dense texture can
be thought of as representing a best-case scenario for
traditional stereo techniques. Our results suggest that
the Surfel Sampling Algorithm performs well on this
sequence too. Three observations can be made about
these results. First, in addition to providing a set of
raw 3D points as in most existing stereo techniques,
our reconstructions provide explicit information about

surface orientation which is not always easy to extract
from a set of noisy 3D points (Amenta et al., 1998).
Second, the recovered shapes display a great degree of
smoothness and global consistency even though each
surfel was recovered completely independently and
no smoothness or regularization criteria were used in
this process. Intuitively, the surfel representation in-
duces this coherence by ensuring that each recovered
surfel explains a fairly large set of pixels in the in-
put views, ranging from 200 to 1000 pixels per surfel
per image. This coherence occurs to a great degree in
all of our reconstructions, suggesting that smoothness
constraints and global shape models are not always
needed for extracting globally-consistent shapes from
images. Third, the recovered 3D motion fields suggest
that a scene’s 3D motions can be very complex—our
spatially-decomposed surfel representation allows 3D
reconstruction of motion fields whose local direction
and magnitude can vary significantly over the surface
while still being globally consistent.

8.2. Flag Sequence

Results from the “flag” sequence (Fig. 11) are shown
in Figs. 12 and 13. Even though the scene is tex-
tured and near-Lambertian, it is challenging both for
traditional stereo and for recent scene-space stereo
techniques (e.g., space carving (Kutulakos and Seitz,
2000)). In particular, the self-occlusions occurring at
many time instants during the sequence create multi-
view image sets where the visibility of individual scene
points changes dramatically from camera to camera.
This makes it difficult to recover the scene’s changing
shape through time without explicitly reasoning about
the occlusion relationships of the many input views.
While recent scene-space stereo algorithms have been
shown to handle such cases successfully, their reliance
on matching pixels one by one through a simple color
comparison test makes the “flag” sequence an almost
worst-case scenario for these methods—the small num-
ber of input views and the many image regions with uni-
form or slowly-varying colors make color-based cor-
respondence finding an inherently ambiguous process,
leading to reconstructions that are overly conservative
and highly non-smooth (Fig. 14). From the point of
view of static shape recovery, our approach therefore
incorporates into a scene-space stereo framework the
spatial coherence constraints and region-based correla-
tion metrics found in traditional binocular stereo tech-
niques (Ohta and Kanade, 1985).
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Figure 10. Reconstruction results for the “T-shirt” sequence.

While the static reconstruction results in this se-
quence illustrate our method’s utility in recovering
shape, a key feature of the method is its ability to cap-
ture the highly-complex 3D motion fields generated
by surfaces such as clothing and skin. These motion
fields are recovered at sub-surfel resolution, since each
surfel is assigned a local parametric motion field that
can vary over its surface (Fig. 12). Note that it would
be difficult to recover such fields by instrumenting the
flag with sensors or reflectors (such as those used for
human 3D motion capture) since this instrumentation
would likely affect the flag’s physical properties and,
hence, its motion dynamics.

To better evalute the accuracy of our reconstructions
in the absence of ground truth, we relied on a tech-
nique that is commonly used to assess errors in image

alignment and motion estimation (Caspi and Irani,
2000): we used the 3D shape and 3D motion informa-
tion computed for frames t, t +1 to perform view trans-
fer across viewpoints and through time, and compared
these predictions to images from the input sequences.
Figure 15 shows three input images, I1,4, I1,5, I3,5, cor-
responding to camera c1 and Frame 4, camera c1 and
Frame 5, and camera c3 and Frame 5, respectively. The
instantaneous 3D shape computed at Frame 5 was used
to warp image I3,5 in order to predict the flag’s appear-
ance from a different input view at that instant. Addi-
tionally, the instantaneous 3D motion field computed
at Frame 4 was used to “unwarp” images at Frame 5 in
order to negate the scene’s 3D motion and “stabilize”
views of the scene. A similar set of results for Frames
14 and 15 is shown in Fig. 16.
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Figure 11. The “flag” sequence: a hanging rectangular cloth is shaken briskly from its top two corners. Three out of forty frames and three out
of seven views are shown. Note that the cloth self-occludes from viewpoint c2, at Frame 14.

Figure 17 shows the difference images created by
subtracting the predictions of Fig. 15 from the corre-
sponding input views. For comparison purposes, the
figure also shows difference images obtained by sub-
tracting raw input views from different viewpoints
and/or time instants, i.e., without performing view
transfer or motion compensation. These results sug-
gest that while some errors still exist, image variations
due to camera position and motion are accounted for
quite accurately by the computed 3D shape and 3D
motion estimates. Similar results are shown in Fig. 18

for the predictions of Fig. 16. A plot of the computed
prediction errors for several time instants is shown in
Fig. 19.

Two observations can be made from our results on
the flag sequence. First, our motion compensation re-
sults (e.g., first column of Figs. 17 and 18) suggest that
the computed 3D motions induce a 2D flow field in each
input view that is sufficiently accurate to “undo” the
scene’s apparent motion from that view. Second, even
though overall prediction errors are quite low for both
motion compensation and view transfer, the transfer
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Figure 12. Reconstruction results for “flag” sequence. Top row: Reconstructed surfels. Middle row: Reconstructed 3D motion field. One vector
is drawn per surfel. Bottom row: Close-up views of surfels and motion field with five 3D motion vectors drawn per surfel. Note the intra-surfel
motion variations in the motion field reconstructed for Frame 14.

of images from one viewpoint to another (e.g., second
column of Figs. 17 and 18) causes noticeably larger
prediction errors than motion compensation for a sin-
gle viewpoint (e.g., first column of Figs. 17 and 18).
These errors appear as “edges” in the difference im-
ages, suggesting that some high frequency information
is lost during the view transfer process. A closer exam-
ination of the input views suggests that a major source
of these errors is the fact that the input cameras do not
capture the scene’s appearance with an equal level of
detail (Fig. 20). This is because differences in the cam-
eras’ distance from the object as well as the cameras’

field-of-view induce a view-dependent blurring of the
scene’s appearance, which is not captured by our image
formation model.15 Importantly, these results suggest
that our approach is sufficiently robust to accurately
recover the scene’s shape despite this view-dependent
blurring that cannot be accounted for in our model.

8.3. Neck Sequence

Results on recovering the motion field of a complex,
deforming skin surface (Fig. 21) are shown in Figs. 22
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Figure 13. Reconstructed 3D motion field, viewed from the position of the input cameras and overlaid with the original “flag” sequence. The
field is reconstructed only for the scene that intersects the user-defined working volume. Note how the motion field recovered for Frame 14 is not
affected by the self-occlusions along viewpoint c2: as shown in the view along c1, the field is reconstructed in its entirety, even for the regions
that are occluded from c2.

Figure 14. Reconstruction results using the Space Carving Algorithm (Kutulakos and Seitz, 2000). The algorithm was initialized to the same
bounding box as the Surfel Sampling Algorithm. (a) Face-on view of the cloth. The white pattern in the middle of the view corresponds to the
“flower” that appears prominently in Fig. 13. (b), (c) Views of the reconstruction along the arrows V 1, V 2 in (a), respectively. Note that the
flower appears severely distorted in these views.
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Figure 15. Results of using the 3D shape and motion estimates in Fig. 12, Column 2 for view transfer and motion compensation. Top row: Input
images. Center and bottom rows: The computed 3D shape and motion estimates define global 2D warp fields, Wt→t ′

i→ j , that allow transfer of an
input image I from view ci and frame t to a new view c j and a new frame t ′. The uniformly-colored areas near the edges of the images correspond
to areas that are not covered by the footprint of any surfel. Note that images along a single column in the figure should be identical—with the
exception of those areas mentioned above—if the 3D shape and motion estimates contain no errors.

and 23. Unlike the fairly small deformations occur-
ring on the face due to facial expressions (DeCarlo
and Metaxas, 1998), the neck surface moves signifi-
cantly during head motion, creating new surface fea-
tures and self-occlusions, and causing deformations
that vary considerably from region to region (e.g., near

the mouth vs. near the chest). We are not aware of
existing techniques that can capture such 3D motions
reliably.

Figure 24 shows 3D shape reconstruction results for
three instants of the neck sequence. The results show
that, with a few exceptions, the reconstructed surfel
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Figure 16. Results of using the 3D shape and motion estimates in Fig. 12, Column 4 for view transfer and motion compensation.

representation captures both the 3D position and the
orientation of the neck surface quite well, including
areas with fine surface structure and little texture infor-
mation. Failures of the technique include (1) “stray”
surfels that do not correspond to any scene surface, (2)
regions that are recovered with incorrect orientation,
and (3) regions that have not been approximated by
a surfel. As in previous scene-space algorithms, the
Surfel Sampling Algorithm is prone to incorrectly

reconstruct surfels whose projected footprints are
inside a uniformly-colored Lambertian region in all
views. While such regions need to contain hundreds of
pixels to affect a surfel’s correct reconstruction, they
do occur—the dark shirt and dark background con-
tributed significantly to the creation of such surfels, as
did some regions on the neck itself. Un-reconstructed
regions occur because of gaps between individually-
reconstructed surfels or because no photo-consistent
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Figure 17. Intensities of pairwise differences between images in Fig. 15. The overall accuracy of our shape and motion computations is captured
by the difference images in the right-most column.

surfel was found. Gaps between surfels can be filled
by performing additional space queries that are in the
vicinity of already-reconstructed surfels and are not
aligned with the volumetric grid. Moreover, since our
surfel representation can be thought of as a sparse
reconstruction of the scene’s envelope, it is possible to
fill gaps by computing a set of 3D surfaces that are tan-
gent to the computed surfels and are consistent with the
input views. This topic is currently under investigation.

8.4. Vase Sequence

Shape, reflectance and motion reconstruction results
for the “vase” scene (Fig. 25) are shown in Figs. 26,
7(b) and 27, respectively. Despite the scene’s strong
specular highlights in some of the input views, the
scene’s shape and its 3D motion field were recovered to
a great degree. The key reason for this behavior is our
method’s ability to reason about the existence of high-
lights and account for them during motion processing.

As Fig. 27 shows, failure to model such highlights ex-
plicitly leads to corrupted 3D motion estimates. This
illustrates the importance of our bump map represen-
tation which, as shown in Figs. 27 and 7(b), allows
us to model the curvature-induced variations in the
appearance of a highlight that occur within a surfel’s
projection.

The results of Fig. 26 also demonstrate our method’s
ability to recover good shape estimates with surfels of
different sizes. This suggests that our basic algorithm
can be applied repeatedly in a coarse-to-fine manner in
order to refine shape estimates and increase the resolu-
tion of the computed motion fields. The development
of such an algorithm is beyond the scope of this paper
and is a topic of current work.

9. Concluding Remarks

This paper introduced surfel-based reconstruction as a
new, general mathematical framework for recovering
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Figure 18. Intensities of pairwise differences between images in Fig. 16. The overall accuracy of our shape and motion computations is captured
by the difference images in the right-most column.

Figure 19. Average intensity values in the difference images of Figs. 17 and 18 (which correspond to Frames 4 and 14, respectively) and in
the analogous difference images from Frames 0 and 8.

the shape, motion and reflectance of an unknown dy-
namic scene from multiple views. At the heart of this
framework is the desire to explain pixels and pixel vari-
ations in the input views in terms of their underlying

physical causes–shape, reflectance, motion, illumina-
tion, and visibility. We have shown that this frame-
work leads to a shape and reflectance reconstruction
algorithm called Surfel Sampling and a motion field
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Figure 20. Enlarged views of a flower that appears prominently in the center-left portion of the images in Figs. 15 and 16.

Figure 21. The “neck” sequence: a man rotates his head. Five out of ninety frames and three out of seven views are shown.

recovery algorithm called Dynamic Surfel Reconstruc-
tion that together overcome several limitations of the
current state of the art. First, they provide the means
to resolve the complex interactions between occlusion,
parallax, shading, illumination, and deformation when

analyzing the 3D shape and motion of general scenes.
Second, they provide explicit information about the
surface orientation of individual scene points and are
able to resolve the occlusion relationships occurring be-
tween the input views of complex scenes. Third, they
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Figure 22. Reconstruction results for the “neck” sequence. Top row: Reconstructed 3D motion field. One vector is drawn per surfel. Bottom
row: Close-up views of surfels and motion field in the vicinity of the chin, with five 3D motion vectors drawn per surfel.

allow us to establish explicit reconstructibility con-
ditions that characterize their behavior for general
3D scenes. Fourth, they overcome the Lambertian re-
flectance constraint currently being used for 3D shape
and motion recovery and can handle the presence of
multiple illumination sources, shadows, and specu-
lar highlights. Fifth, they enable recovery of globally-
consistent dense 3D motion fields of complex scenes
without any prior information about their shape or
motion.

While the effectiveness of our approach was demon-
strated on a variety of complex real scenes, our frame-
work is based on idealized models of scene illumina-
tion, reflectance, and image formation. Handling the
case of unknown and possibly-extended light sources
presents a formidable (and possibly intractable) in-
verse problem, especially when effects such as inter-
reflections contribute significantly to image appear-
ance. Despite some promising recent results that have
studied this case for scenes with known geometry (Yu
et al., 1999; Ramamoorthi and Hanrahan, 2001), we
know of no solution to the general 3D scene capture
problem under general illumination conditions. Ex-
tending our work to incorporate measurement errors
and to rely on more realistic models of diffuse and
specular reflectance are also topics of our current re-
search. Other directions include (1) developing coarse-

to-fine surfel sampling algorithms for capturing fine
surface detail, (2) developing methods for identifying
surface creases on piecewise-smooth scenes, (3) devel-
oping fast methods for non-uniform sampling of surfel-
space, (4) exploiting spatio-temporal coherence while
sampling surfel-space across multiple time instants,
(5) studying ways to incorporate domain-dependent,
spatial coherence constraints between surfels (Ju et al.,
1996), and (6) investigating applications of our al-
gorithms to image-based rendering and computer
animation.

Appendix A: Surfel-Induced
Image Homographies

The 3D shape component of every surfel defines a set of
warp functions (Wexler and Shashua, 1999), Wr→i ( ),
that map a pixel along the “reference” view cr to its
corresponding pixel in the i-th view, ci , i = 1, . . . , N .
Given a surfel shape component S = 〈o, ε, n, d〉
and the 3 × 4 projection matrix [Ri ti ] of the i-th
camera, these warp functions can be expressed as 3 ×
3 homogeneous homography matrices (Faugeras and
Keriven, 1998):

Hi = (
sT

0 n
)
Ri + ti nT (29)

qi = Wr→i (q) = Hi H−1
r q, (30)
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Figure 23. Reconstructed 3D motion field, viewed from the position of the input cameras and overlaid with the original “neck” sequence. Note
that the left side of the neck in Frame 27 is occluded from viewpoint c3 but the neck’s motion is correctly recovered, as indicated in the view
along c1. Also note that since we did not perform “hidden vector” elimination when overlaying images and vectors, the vectors that are overlaid
on the chin in c3 correspond to points that are occluded from that view.

Figure 24. Shape reconstruction results for the “neck” sequence, overlaid with the input images. Reconstructed surfels are shown as transparent
green regions. Since the reference camera was c1 for all surfels, only surface regions fully-visible to that camera were reconstructed.
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Figure 25. The “vase” sequence: a vase is manually rotated about its axis of symmetry. Three out of sixty frames and three out of seven views
are shown.

Figure 26. Shape reconstruction results for the “vase” sequence. Top row: Reconstructed surfels overlaid with the input images for a 16×12×8-
voxel tessellation of the working volume. Surfels in this volume have footprints of approximately 200 to 1000 pixels in the input views. Bottom
row: Results for a run of the Surfel Sampling algorithm on the same images but with a higher-resolution, 32 × 24 × 8 tessellation of the scene
volume. In this case, surfels are one-quarter the size of surfels in the top row and have footprints that cover approximately to 50 to 250 pixels.
Note that in both cases the surface regions containing specular highlights are reconstructed correctly.

where s0 is the surfel point closest to o, all pixels qi are
expressed in homogeneous coordinates, and all equal-
ities are up to a homogeneous scale factor.

When a surfel is allowed to move or deform, the
surfel’s shape and motion components define a set of
warp functions Wt0→t

r→i ( ) that map a pixel along the ref-
erence view at time t0 to its corresponding pixel at time
t in the i-th view. These warps can be expressed as

compositions of three homographies and, as such, are
homographies themselves:

qi,t = Wt0→t
r→i (q) = Hi,t Mt H−1

r q. (31)

In the equation above, Hi,t is obtained by replacing the
static quantities s0 and n in Eq. (29) with their dynamic
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Figure 27. Reconstructed 3D motion field, overlaid with the original “vase” sequence. To illustrate the effect of our invariant-based approach,
where specularities are removed from the input views before performing 3D motion computations, we show the 3D motion fields computed using
our method and using an analogous method that acts directly on the raw input images (i.e., replaces I Dinv

i with Ii in Eqs. (27) and (28)). Top row:
Motion fields computed by the two methods. The black color of some vectors is due to vector rendering artifacts and is of no significance to our
results. Middle row: Motion vectors whose counterparts in the other method’s reconstruction differ significantly. Note that the approach based
on raw images leads to significant errors in the motion estimates in the neighborhood of the strong specular highlight. Bottom row: Enlarged
views of the elongated specular highlight that appears in the input images, along with its decomposition into diffuse and specular components.

counterparts, s0,t and nt , respectively:

s0,t = s0 + (t − t0) ŝt and

nt = n + (t − t0) (su ∧ ŝvt + ŝut ∧ sv)

‖n + (t − t0) (su ∧ ŝvt + ŝut ∧ sv)‖ .
(32)

The homography Mt induced by the surfel’s 3D motion
component is given by

Mt = (
sT

0 n
)[

I3×3 + (t − t0) A
] + (t − t0) bnT , with

(33)

A = ŝut sT
u + ŝvt sT

v , and (34)

b = ŝt − A s0, (35)

where I3×3 is the 3 × 3 identity matrix.

Appendix B: Proof Sketch of Theorem 1

Without loss of generality, we prove a stronger version
of Theorem 1 in which the points p and o are identical,
n is along the normal at p, and d = 0:
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Theorem 1 (Surfel Approximation Theorem). For ev-
ery scene point p with normal n that does not project
to a shadow boundary or an occlusion boundary there
exists a surfel shape component Sε

p = 〈p, ε, n, 0〉 and
components R,B such that E1(Sε

p,R,B) < δ.

We prove Theorem 1 by deriving a closed-form
upper bound for the surfel’s radius, ε, that satisfies
E1(Sε

p,R,B) < δ for an arbitrary δ > 0. To obtain
this bound, we analyze the magnitude of the distance
on S between two scene points, p1, p2, that are back-
projections of the same point on Sε

p (Fig. 28(a)). In par-
ticular, we first show in Section B.1 that if this distance
is bounded, so is E1(Sε

p,R,B). We then show in Sec-
tion B.2 that given an arbitrary bound on E1(Sε

p,R,B),
we can choose the radius ε so that this error is smaller
than that bound. For simplicity, we restrict our analy-
sis to the case of scenes with Lambertian reflectance;
we briefly discuss how this analysis can be general-
ized to the case of non-Lambertian scenes at the end of
Section B.2.

We use the following notation below. Given a point
p1 ∈ �3, �p1 is the normal plane of p that contains p1;
Cp1 is the normal section S∩�p1 ; and dM (p1, p2) is the
distance between two 3D points p1 and p2, measured
on a 1D or 2D manifold M that contains them.

B.1. Frequency-Domain Analysis

Let x(u, v) be a parameterization of S with x(0, 0) = p
and let I (u, v) = I Dinv(x(u, v)) be the function of S’s

(a) (b)

Figure 28. Geometry of Theorem 1. (a) Scene back-projections.
The scene back-projections, p1 and p2, of a point s ∈ �3 with respect
to viewpoints c1 and c2, respectively, are the visible points on the
scene whose projection coincides with that of s for those viewpoints.
(b) Given a point s ∈ Tp(S) ∩ B(p, ρ), the cone whose apex is s,
whose axis is along n, and whose generator forms an angle equal to
α with n contains all cameras that view s from above Tp(S).

Static Picture Invariant around p. Since p does not
project to a shadow boundary or an occlusion boundary,
we can find a radius ρ > 0 such that all points in the
closed ball B(p, ρ) are visible from the same cameras
and light sources, and no point in S ∩ B(p, ρ) projects
onto a shadow or an occlusion boundary. Moreover,
since the albedo of S has a finite power spectrum, the
absence of visibility and illumination discontinuities in
the neighborhood of p implies that I (u, v) also has a
finite power spectrum. In particular, the Fourier trans-
form of I (u, v) has non-null magnitude only at fre-
quencies whose absolute value is smaller than some
frequency upper bound and I (u, v)’s power has a finite
value.16 Under these conditions, Lemma 1 shows that a
non-zero distance between the scene back-projections
of a point on Sε

p produces a bounded phase shift in
the frequency domain, leading to a bounded value for
the Static Photo-Consistency metric.17 Let p1, p2 be
two surface points in B(p, ρ) and suppose that γ (s)
is an arc-length parameterization of a surface curve
γ ⊂ B(p, ρ) that connects p1 and p2 (Fig. 28):

Lemma 1 (Bounded Radiance Difference Lemma). If
the Static Picture Invariant per arc length, I (s), along
every curve γ has all its power in the frequency range
[−�, �], the power of the difference �I = I (s +
�s) − I (s) caused by a shift �s = dγ (p1, p2) along γ

is bounded:

|�I |2 ≤ |I |2 (2 − 2 cos(min(� �s, π ))), (36)

where |I |2 is the power of I (s).

Proof of Lemma 1: A positional shift in the spatial
domain of a function I (s) multiplies its Fourier trans-
form, I(ω), by a complex exponential factor (Pratt,
1991):

F{I (s + �s)} = I(ω) exp( j ω �s), where j
def= √−1.

Since the Fourier transform is a linear operator, the
transform of the difference between the shifted and the
original Static Picture Invariant is given by

F{I (s + �s) − I (s)} = I(ω) (exp( j ω �s) − 1).

The integral of the squares of the terms I (s+�s)− I (s)
over the entire curve γ , normalized by the curve’s
length, A, is the power of the function I (s+�s)− I (s).
We relate this integral to the power of the func-
tion’s Fourier transform, F{I (s + �s) − I (s)}, using
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Parseval’s Theorem (Pratt, 1991):

|�I |2 def= 1

A

∫ ∞

−∞
|I (s + �s) − I (s)|2 ds

= 1

2π A

∫ ∞

−∞
|F{I (s + �s) − I (s)}|2 dω

= 1

2π A

∫ ∞

−∞
|I(ω)|2(2 − 2 cos(ω �s)) dω

≤ 1

2π A

∫ ∞

−∞
|I(ω)|2

× (2 − 2 cos(min(|ω �s|, π ))) dω.

Using the hypothesis that there is a frequency upper
bound, �, and the fact that the function (2 − 2 cos(x))
is monotonic for x ∈ [0, π ], the expression above yields

|�I |2 ≤ 1

2π A

∫ ∞

−∞
|I(ω)|2

× (2 − 2 cos(min(� �s, π ))) dω.

Since the term (2 − 2 cos(min(� �s, π ))) does not de-
pend on ω, it can be factored out of the integral above
and Parseval’s theorem can be applied again, to convert
the remaining integral back to the spatial domain:

|�I |2 ≤ |I |2 (2 − 2 cos(min(� �s, π ))).

Since the Static Photo-Consistency metric,
E1(Sε

p,R,B), is an integral of squares of terms of
the form I (s + �s) − I (s), normalized by the area
integrated, a sufficient condition to guarantee that
the measure E1(Sε

p,R,B) is smaller than a given
threshold δ is that the following inequalities are
satisfied:18

� �s ≤ π and cos(� �s) > 1 − δ

2|I |2 , (37)

where �s is an upper bound on the surface distance
between two scene back-projections of any single point
s ∈ Sε

p . This leads to the following constraint on Sε
p:

sup
p1,p2∈backproj(s)

s∈Sε
p

dS(p1, p2) ≤ 1

�
arccos

[
1 − min

(
δ

2|I |2 , 2

)]
.

(38)

B.2. Spatial-Domain Analysis

We now prove a more specific version of Theorem 1,
stated as follows (Fig. 28(b)):

Theorem 4 (Surfel Approximation Theorem). Let
ρ > 0 be such that (1) all points in the closed ball
B(p, ρ) are visible from the same cameras and light
sources and (2) no point in S ∩ B(p, ρ) projects onto
a shadow or an occlusion boundary. The Static Photo-
Consistency metric, E1(Sε

p,R,B), is smaller than
δ > 0 if

ε ≤ (sec α − tan α) min

(
ρ

2
,

1

κmax
,

β

π − 2α

)
,

where β is defined by the right-hand side of Eq. (38)

β = 1

�
arccos

[
1 − min

(
δ

2|I |2 , 2

)]
,

κmax is the maximum absolute principal curvature of
points in S ∩ B(p, ρ); and α is the maximum angle
formed by the normal n at p and a ray connecting a
camera above Tp(S) to a point in Tp(S) ∩ B(p, ρ).

Proof of Theorem 4: We distinguish two cases:

Case A: (κmax = 0)

In this case, the surface in the ball B(p, ρ) is a plane
and hence the tangent plane Tp(S) describes the scene’s
shape exactly inside this ball. It follows that the scene
backprojection of every point in Tp(S) ∩ B(p, ρ) co-
incides with the point itself. Hence, E1(Sε

p,R,B) will
be identically zero for any ε ≤ ρ.

Case B: (κmax > 0)

Let s be a point on Tp(S) ∩ B(p, ρ) and let p1, p2

be two scene back-projections of s. From the triangle
inequality on surfaces we have (do Carmo, 1976):

dS(p1, p2) ≤ dS(p1, p) + dS(p2, p) (39)

≤ dCp1
(p1, p) + dCp2

(p2, p). (40)

Equation (40) suggests that we can impose a bound
on the surface distance between any two scene back-
projections by concentrating on the normal sections
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defined by the points p1 and p2, respectively:

dS(p1, p2) ≤ 2 sup
p0

dCp0
(p0, p) (41)

where p0 ranges over the set of surface points that are
scene back-projections of some point in Sε

p . We now
proceed by setting an upper bound for the distance
dCp0

(p0, p) and choosing an ε that guarantees that no
scene back-projections of points in Sε

p can be farther
away from p. We use the following lemma for this
purpose:

Lemma 2 (Distance Bound Lemma).

ε ≤ (sec α − tan α)ρ∗ ⇒ dCp0
(p0, p) ≤ ρ∗

(
π

2
− α

)
,

where

ρ∗ = min

(
ρ

2
,

1

κmax

)
.

Proof of Lemma 2: Define two spheres that touch
the surface at p, have a radius equal to ρ∗, and are on
opposite sides of Tp(S). By construction, these spheres
are subsets of B(p, ρ) and every point on their surface
has both principal curvatures equal to κ∗ = 1/ρ∗, i.e.,
equal to or larger than at any point on S ∩ B(p, ρ). It
follows that the intersection of these two spheres with
an arbitrary normal plane � of p defines two closed
disks, D1 and D2, bounded by circles ∂ D1 and ∂ D2,
respectively, that have two properties (Fig. 29(a)): (1)
D1, D2 are subsets of � ∩ B(p, ρ), and (2) no point of
S ∩ � is contained in the interior of D1 and D2.

Let q1 be the point on ∂ D1 whose tangent forms
an angle equal to α with the normal n and let s and
q2 be the intersections of this tangent with Tp(S) and
∂ D2, respectively (Fig. 29(b)). It follows that the scene
back-projection, p0, of any point s0 on the line segment
sp will lie inside a closed region that depends only on
q1, D1 and D2:19

p0 ∈ ( �
pq1q2 −D1 ∪ D2

)
. (42)

Moreover, since the curvature of all points in S ∩ � is
equal to or smaller than that of ∂ D1 and ∂ D2, we have
(do Carmo, 1976):

dCp0
(p0, p) ≤ d∂ D1 (q1, p) = ρ∗

(
π

2
− α

)
. (43)

(a) (b)

Figure 29. Proof of Lemma 2. (a) The radius ρ∗ of disks D1, D2 is
chosen so that it forces their containment inside B(p, ρ) and so that
it is a lower bound on the radius of curvature of every normal section
of every surface point in B(p, ρ). (b) The scene back-projection, p0,
of every point s0 ∈ S‖s−p‖

p whose corresponding visual ray forms
an angle 0 ≤ φ ≤ α with the surface normal will be contained
in the curved-triangular region shaded in dark gray. The point p0

will be below p’s tangent plane if the surface is convex at p, will
be above it if p is concave, and may be anywhere in the dark gray
region if the surface at p is hyperbolic (do Carmo, 1976). Note that
if −α ≤ φ ≤ 0, the region that contains p0 is the reflection, about
the tangent plane, of the dark gray region in the figure. The case of
φ < 0 does not require separate treatment since it does not affect the
bound on ε.

The lemma now follows by taking ε to be less than or
equal to the length of segment sp and using the fact
that s is the intersection of two lines that are tangent to
a circle of radius ρ∗ and form an angle of (π/2 − α).
After some algebraic manipulations, this leads to an
upper bound for ε that ensures satisfaction of Eq. (43):

ε ≤ (sec α − tan α)ρ∗. (44)

The upper bound on ε in Theorem 4 now follows by
choosing ε so that the inequalities defined by Eqs. (38),
(41), (43), and (44) are satisfied simultaneously.

A similar bound on the radius ε can be established
for the case where the scene radiance is specular. The
major difference with respect to the Lambertian case
is that scene radiance is view-dependent and therefore
is no longer a scalar function over the scene’s surface.
Nevertheless, for the specular model of Eq. (3), image
intensity is still a smooth function of both the surface
normal and the incoming and the outgoing directions,
din and dout. This fact can be used to establish an up-
per bound on the intensity differences caused by lim-
ited errors in surface orientation, which leads to the
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desired upper bound on the Static Photo-Consistency
metric.

Appendix C: Proof of Theorem 2

Since only light source ll contributes to the specular
component of the surfel’s appearance in view ci , the
difference between the predicted and actual image in-
tensities at the projection of surfel point s j in this view
can be expressed as

I pred
i (s j ) − Ii (s j ) = f Ll(s j )

[
CS

(
ñ j , dout

j , din
j

)]k

− [
Ii (s j ) − I Dinv

i (s j )
]
, (45)

where I Dinv
i (s j ) is the computed static picture invariant;

ñ j is the bump map normal at s j ; and dout
j and din

j are
the unit orientations of the rays from s j to ci and ll ,
respectively.

Since light source ll contributes to the specular inten-
sity at s j ’s projection, the product f Ll(s j ) in Eq. (45)
cannot be zero. It follows that the left-hand side of that
equation is zero for all j = 1, . . . , P if and only if for
all such j

CS
(
ñ j , dout

j , din
j

) − bi j f − 1
k = 0, (46)

with bi j = [ Ii (s j )−I Dinv
i (s j )

Ll (s j )
]

1
k . Now let dout

c , din
c be the unit

vectors along the rays s(uc, vc)ci and s(uc, vc)ll , respec-
tively. Because the distance between s j and the bump
map origin, s(uc, vc), is bounded by the surfel’s spatial
extent, the differences dout

j − dout
c and din

j − din
c both

tend to zero when ε → 0. We can therefore re-write
Eq. (46) as

CS
(
ñ j , dout

c , din
c

) − bi j f − 1
k = e(ε) (47)

with limε→0 e(ε) = 0.

n(t) = n + (t − t0)(x̂ut ∧ xv + xu ∧ x̂vt ) + higher-order (t−t0)-terms

‖n + (t − t0)(x̂ut ∧ xv + xu ∧ x̂vt ) + higher-order (t−t0)-terms‖ ,

The vectors dout
c and din

c have unit norm and hence
the term CS(ñ j , dout

c , din
c ) is equal to

(
dout

c

)T (
2 ñ j ñT

j − I3×3
)(

din
c

)
.

Re-writing ñ j as n + �n j in the expression above,
where n is the surfel’s normal and �n j collects all
terms in the right-hand-side of Eq. (13) except n, we
obtain:

CS
(
ñ j , dout

c , din
c

) = CS
(
n, dout

c , din
c

) + 2
(
dout

c

)T (
n �nT

j

+ �n j nT
j + �n j�nT

j

)(
din

c

)
.

Since the bump map’s origin is taken to be the point
of perfect specular reflection on the surfel, the term
CS(n, dout

c , din
c ) is equal to one and the terms containing

n �nT
j and �n j nT cancel each other out, yielding:

CS
(
ñ j , dout

c , din
c

) = 2
(
dout

c

)T
�n j �nT

j

(
din

c

) + 1. (48)

The theorem now follows by replacing all occurrences
of �n j in Eq. (48) with the right-hand-side of Eq. (13)
and substituting the resulting expression into Eq. (47).

Appendix D: Proof of Theorem 3

For each camera ci , the projection of p j contributes a
linear constraint to the system in Eq. (27). This con-
straint is given by Eq. (26), which is re-written here:

[
∂

∂p
I Dinv
i (p j )

]
[x̂t + u j x̂ut + v j x̂vt ] − ρ j d∞(p j )

T ∂n
∂t

= − ∂

∂t
I Dinv
i (p j ). (49)

Since the moving plane can be parameterized as

x̂(u, v, t) = (x0 + uxu + vxv)

+ (t − t0) (x̂t + ux̂ut + vx̂vt )

+ higher-order (t−t0)-terms,

its unit normal vector at time t , n(t), is the unit vector
in the direction of dx̂

du ∧ dx̂
dv

:

where n denotes n(t0). From a Taylor-series expansion
of the right-hand-side above,

n(t) = n + (t − t0)(I3×3 − nnT )(x̂ut ∧ xv + xu ∧ x̂vt )

+ higher-order (t−t0)-terms.



Multi-View Scene Capture by Surfel Sampling 211

We can therefore write the temporal derivative of
n(t) as

∂n
∂t

= (I3×3 − nnT )(x̂ut ∧ xv + xu ∧ x̂vt )

+ (t−t0)-terms. (50)

The system in Eq. (27) now follows by substituting
Eq. (50) into Eq. (49), by using the facts that n ∧ xu =
xv and xv ∧ n = xu , and by using e(t) to represent the
terms of first-and-higher order with respect to t − t0.
By definition, the limit of e(t) as t → t0 is zero.
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Notes

1. While we restrict our theoretical analysis to scenes that are
smooth everywhere for reasons of mathematical simplicity,
our surfel representation, described in Section 3, is piecewise-
smooth and our core algorithms, described in Sections 5 and 6,
require only local smoothness. We therefore believe that our
framework is general enough to handle piecewise-smooth scenes
as well. A theoretical investigation of this topic will be the subject
of future work.

2. For simplicity, we omit the color term λ in all subsequent
equations.

3. In theory, every non-convex scene contains points that receive
indirect illumination due to surface inter-reflections (Forsyth and
Zisserman, 1991). Strictly speaking, our model is therefore only
applicable to convex scenes. In practice, however, we have found
this model to be quite adequate even when applied to non-convex
scenes because inter-reflections usually do not dominate the im-
age formation process for scenes that are not mirror-like.

4. We should emphasize that our approach is not dependent on the
Phong model for representing reflectance. While in this work we
chose the Phong model for reasons of computational simplicity,
other models that better capture the reflectance properties of real
scenes can also be used (e.g., the Torrance-Sparrow model (1967)
and the Oren-Nayar model (1997)).

5. Note that this approach is similar in spirit to Shashua’s specu-
larity identification technique (Shashua, 1992), where specular
pixels are identified in a view of the scene by estimating and
subtracting the contribution of diffuse reflectance from the color
of every pixel.

6. Note that su is a unit vector on the surfel’s plane and hence it is
determined by a single direction parameter. This vector, along
with the surfel normal, uniquely define sv to be the vector n ∧ su .

7. Even though our representation requires six parameters to rep-
resent a bump map, this representation is not minimal. This is
because κuv is identically zero when the vector su is along a direc-
tion of principal surface curvature (do Carmo, 1976), resulting in
a five-parameter description of the map. We avoid using this de-
scription for reasons of computational simplicity since it requires
estimating the principal surface directions.

8. More formally, the theorem applies to all but a measure-zero set
of scene points when the scene’s surface is generic (Koenderink,
1990). For non-generic scenes, the set of excluded points can
be a 2D region on the surface (e.g., the face of a cube viewed
face-on from an input camera). Note, however, that the theorem
can still be applied to points projecting to an occlusion boundary
along a view ci by simply excluding ci from the computation
of E1. Theorem 1 can never be applied to points on a shadow
boundary.

9. In this respect, our method is similar in spirit to approaches
that treat specularities as outliers for motion estimation (Black
et al., 2000; Black and Anandan, 1996) and recognition (Shashua,
1992). Unlike these approaches, however, our bump map esti-
mation method goes a step further by actually using the detected
specularities to extract additional information about the scene’s
local surface geometry.

10. While it is possible to include B and k in the minimization, we
have found that in practice this significantly increases the num-
ber of iterations until convergence without causing a substantial
reduction in the metric E1.

11. In practice, this condition can be easily satisfied by acquiring
sufficiently-dense image sequences. For instance, points moving
at 3 cm/sec, observed at 30 frames/sec, and illuminated by two
light sources 3 m away, induce an inter-frame 3D displacement of
1 mm/frame and an inter-frame change of less than 0.02 degrees
in the orientation of d(p).

12. To form the system defined by Eqs. (27) and (28) we must com-
pute spatial and temporal derivatives of the Static Picture Invari-
ant, I Dinv

i (p j ), at the projections of every sample point p j . In
practice, we compute these derivatives at sub-pixel resolution
by bilinearly interpolating their values at pixel centers. Central
values are computed at each level of the Gaussian pyramid by
simple differencing in space and/or time.

13. Note that this is only an approximation to vis(ci , p) because
p ∈ vm may be occluded by points inside the voxel vm . In
practice, this implies that the size of vm must be small enough
to ensure that either such self-occlusions do not occur or that
the cameras that may exhibit such self-occlusions can be iden-
tified without knowing the scene’s shape inside vm (Kutulakos,
2000).

14. See Kutulakos and Seitz (2000) for ways to perform such visi-
bility computations efficiently.

15. We should note, however, that since the position of each scene
point and of the cameras is known exactly, these effects can be
accounted for with an appropriate model for the camera’s lenses.

16. We define the power of a function f (x) to be the average value
of | f (x)|2 over its entire domain.

17. Note that a similar analysis was used in the design of filters for
optical flow estimation (Fleet and Jepson, 1990). The main differ-
ence here is that we study the relationship between displacements
along a 3D surface and phase shifts on this 3D surface’s radiance,
instead of the relationship between image-plane displacements
and phase shifts on image intensities.
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18. By changing the integrals in the proof of Lemma 1 to double
integrals, it is easy to show that the inequality of Lemma 1 also
holds when |�I |2 is evaluated over a 2D neighborhood instead
of the curve γ .

19. Without loss of generality, we assume here that the camera defin-
ing the scene-backprojection also lies on the plane �. It is pos-
sible to show that the scene back-projections of s0 from cameras
not on � will be closer to p than s0 when measured on the sur-
face and, hence, do not affect our distance bound. Due to space
considerations, this step is omited from the proof.
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