Computer Science 263 July 17, 2007
St. George Campus University of Toronto

Homework Assignment #4
Due: July 31, 2007, by 6:10 pm

1. Please complete and attach (with a staple) an assignment cover page to the front of your assignment.
You may work alone or with one other student. If you work in a group, write both your names on
the cover sheet and submit only one copy of your homework.

2. If you do not know the answer to a question, and you write “I (We) do not know the answer to this
question”; you will receive 20% of the marks of that question. If you just leave a question blank
with no such statement, you get 0 marks for that question.

3. Unless we explicitly state otherwise, you should justify your answers. Your paper will be marked
based on the correctness and completeness of your answers, and the clarity, precision and conciseness
of your presentation.

Question 1. (20 marks) We can find the distance between two vertices s and ¢ in an undirected graph
G in O(n + m)-time by building a BFS starting at s. In some cases we can do better by starting a BFS
from both s and t simultaneously. This is what the following algorithm does. Each vertex will have a
“status,” which can have integer values from —2 to 2. A status of 0 means the vertex is undiscovered
(not yet visited), —1 or 1 means discovered (discovered from s, respectively), and —2 or 2 means finished
(examined from s, respectively ¢). The algorithm terminates when a vertex u wants to examine a vertex
v of opposite sign (the two BFS meet) by returning the distance from s to t.

TWO-SIDED-BFS(G, s, 1):
if s =t then return 0
for each v € V[G] — {s,t} do // initialization
status[v] < 0
d[v] < o0
7[v] < nil
status[s| < —1; d[s] < 0; 7[s] « nil
status[t] «— +1; d[t] < 0; w[t] < nil
Q <« {s,t} // initialize queue
while @ # (0 do // main loop
u «— DEQUEUE(Q)
for each v € Adj[u] do
if status[v] = 0 then
status[v] « status|u]
d[v] « d[u] +1
m[v] — u
ENQUEUE(Q, v)
else if status[v] - status[u] < 0 then
return du] + dfv] + 1
statuslu] < 2 - status|u]
return oo

a. (5 marks) Prove that the algorithm returns the correct distance and that it does so in O(n +m) time.

b. (5 marks) Modify this algorithm so that it returns a shortest path from s to ¢ in O(n + m) time.

c. (5 marks) For k > 1, let graph T} be the complete (rooted) binary tree on 2¥ — 1 vertices.

Explain why the worst-case running time for determining the distance between two vertices in T} using
BFS is O(n) = ©(2%). Explain why ©(n) is the worst-case running time even if we ignore the initialization
steps and count only the main loop of the BFS algorithm.

d. (5 marks) Show that when TWO-SIDED-BFS is used to find the distance between the root s and a
leaf t of T}, the time to execute the while loop is ©(y/n).

e. (no marks) [This question will not be graded. It is given as an interesting problem you may want
to think about.] Show that the worst-case time to execute the while loop is ©(n%?) when TWO-SIDED-
BFS(Ty, s,t) is called for arbitrary vertices s and ¢.

Question 2. (20 marks) A bipartite graph G = (V, E) is a graph where V' can be partitioned into two
sets V1 and Vs (one of which may be empty) such that there are no edges between any two nodes in Vj
or between any two nodes in V5 (that is, all edges of G have one endpoint in each set). There are many
fast algorithms on bipartite graphs, so it is important to be able to recognize whether a given graph is
bipartite.

a. (8 marks) Prove that a graph is bipartite if and only if it does not contain an odd cycle. Recall that
an odd cycle is a simple cycle that contains an odd number of vertices.

b. (12 marks) Show how to modify DFS so that, given any graph G, it proves in ©(n 4+ m) time whether
the graph is bipartite or not. If the graph is bipartite, your algorithm should return two sets V; and V5 as
described above, but if the graph is not bipartite, your algorithm should return an odd cycle in G.

Question 3. (20 marks) A wnicyclic graph is a connected graph with exactly one simple cycle. Give
an efficient algorithm that, given a connected undirected non-tree graph G = (V, E) (represented by its
adjacency lists) and a weight function w : E — R, finds a unicyclic spanning subgraph of G of minimum
weight. Prove that your algorithm is correct and analyze its worst case time complexity as a function of
n = |V] and m = |E|. (A portion of your mark will be devoted to efficiency, with more marks awarded to
more efficient algorithms.)

Question 4. (40 marks) This question is a programming assignment. To see its description follow the
link given in the “Assignments” section of the course web page.

