
Chapter 4

Proofs

What is a proof?

A proof is an argument that convinces someone who is logical, careful and precise. The form and detail of
a proof can depend on the audience (for example, whether our audience knows as much about general math
knowledge, and whether we’re writing in English or our symbolic form), but the fundamentals are the same
whether we’re talking mathematics, computer science, physical sciences, philosophy, or writing an essay in
literature class. A proof communicates what someone understands, to save others time and effort. If you
don’t understand why something is true, don’t expect to be able to prove it!

How do you go about writing a proof? Generally, there are two steps or phases to creating a proof:

1. Understanding why something is true.

This step typically requires some creativity and multiple attempts until an approach works. You should
ask yourself why you are convinced something is true, and try to express your thoughts precisely and
logically. This step is the most important (and most effort), and can be done in the shower or as you
lie awake in bed (the two most productive thinking spots).

Sometimes we call this finding a proof.

2. Writing up your understanding.

Be careful and precise. It is usually helpful to use our formal symbolic form, to ensure you’re careful
and precise. Often you will detect errors in your undertanding, and it’s common to then go back to
step 1 to refine our understanding.

This is when we are writing up a proof.

Sometimes these steps can be combined, and often these steps feedback on each other. As we try to write
up our understanding, we discover a flaw, return to step 1 and refine our understanding, and try writing
again.

Students are often surprised that most of the work coming up with a proof is understanding why something
is true. If you go back to our definition of what is a proof, this should be obvious: to convince someone,
we first need to convince ourselves and order our thoughts precisely and logically. You will see that once we
gain a good understanding, proofs nearly write themselves.

Setting up direct proof of implication

We want to make convincing arguments that a statement is true. We’re allowed (forced, actually) to use
previously proven statements and axioms (things that are defined to be true, or assumed to be true, for the
domain). For example, if D is the set of real numbers, then we have plenty of rules about arithmetic and
inequalities. From these statements, we want to extend what we know, eventually to include the statement
we’re trying to prove. Let’s examine how we might go about doing this.

4-1



CHAPTER 4. PROOFS 4-2

Consider an implication we would like to prove that is of the form:

c1: ∀x ∈ D, p(x)⇒ q(x)

Many already-known-to-be-true statements are universally quantified implications like c1. We’d like to find
among them a chain:

c2.0: ∀x ∈ D, p(x)⇒ r1(x)

c2.1: ∀x ∈ D, r1(x)⇒ r2(x)

...

c2.n: ∀x ∈ D, rn(x)⇒ q(x)

This, in n steps, proves c1, using the transitivity of implication.
A more flexible way to summarize that the chain c2.0,. . . ,c2.n prove c1 is to cite the intermediate

implications that justify each intermediate step. Here you write the proof that p(x)⇒ q(x) as:

Let x ∈ D be such that p(x)

Then r1(x) (by c2.0)

So r2(x) (by c2.1)
.
.
.

So q(x) (by c2.n)

Thus p(x)⇒ q(x).

This form emphasizes what each existing result adds to our understanding. And when it’s obvious which
result was used, we can just avoid mentioning it (but be careful, one person’s obvious is another’s mystery).

Although this form seems to talk about just one particular x, by not assuming anything more than x ∈ D
and p(x), it applies to every x ∈ D with p(x).

Hunting the elusive direct proof

In general, the difficulty with direct proof is there are lots of known results to consider. The fact that a
result is true may not help your particular line of argument (there are many, many, many true but irrelevant
facts). In practice, to find a chain from p(x) to q(x), you gather two lists of results about x:

1. results that p(x) implies, and

2. results that imply q(x)

Your fervent hope is that some result appears on both lists.

p(x)

r1(x)

r2(x)
...

s2(x)

s1(x)

q(x)



CHAPTER 4. PROOFS 4-3

Anything that one of the ri implies can be added to the first list. Anything that implies one of the si can
be added to the second list. What does this look like in pictures?

In Venn diagrams we can think of the ri as sets that contain p but may not be contained in q (the ones
that don’t are dead ends). On the other hand, the si are contained in q but may not contain p (the ones
that don’t are dead ends). We hope to find a patch of containment from p to q. Another way to visualize
this is by having the ri represented as a tree. In one tree we have root p, with children being the ri that
p implies, and their children being results they imply. In a second tree we have root q, with children being
the results that imply q, and their children being results that imply them. If the two trees have a common
node, we have a chain.

Are you done when you find a chain? No, you write it up, tidying as you go. Remove the results that
don’t contribute to the final chain, and cite the results that take you to each intermediate link in the chain.

What do ∧ and ∨ do?

Now your two lists have the form

∀x ∈ D, p(x)⇒ (r1(x) ∧ r2(x) · · · rm(x))

∀x ∈ D, (sk(x) ∨ · · · ∨ s1(x))⇒ q(x)

Since p(x) implies any “and” of the ri, you can just collect them in your head until you find a known
result, say r1(x) ∧ r2(x) ⇒ rk(x), and then add rk(x) to the list. On the other hand, if you have a result
on the first list of the form r1(x) ∧ r2(x), you can add them separately to the list. On the second list,
use the same approach but substitute ∨ for ∧. Any result on the first list can be spuriously “or’ed” with
anything: r1(x)⇒ (r1(x)∨ l(x)) is always true. On the second list, we can spuriously “and” anything, since
(s1(x) ∧ l(x))→ s1(x).

If we have a disjunction r1(x)∨r2(x) on the first list, we can use it if we have a result that (r1(x)∨r2(x))⇒
q(x), or the pair of results r1(x)⇒ q(x), and r2(x)⇒ q(x).

An odd example

Suppose you are asked to prove that every odd natural number has a square that is odd. You can start by
writing the outline of the proof you would like to have:

Let n ∈ N, and assume n is odd.
...
So n2 is odd.

Thus ∀n ∈ N, n odd ⇒ n2 odd.

Start scratching away at both ends of the
... (the bit that represents the chain of results we need to fill in).

What does it mean for n2 to be odd? Well, if there is a natural number k such that n2 = 2k + 1, then n2

is odd (by definition of odd numbers). Add that to the end of the list. Similarly, if n is odd, then there
is a natural number j such that n = 2j + 1 (by definition of odd numbers). It seem unpromising to take
the square root of 2k + 1, so why not carry out the almost-automatic squaring of 2j + 1? So now, on our
first list, we have that, for some natural number j, n2 = 4j2 + 2j + 1. Using some algebra (distributivity of
multiplication over addition), this means that for some natural number j, n2 = 2(2j2 + j) + 1. If we let k
from our second list be 2j2 + j, then we certainly satisfy the restriction that k be a natural number (they
are closed under multiplication and addition), and we have linked the first list to the second:1

How about the converse, ∀n ∈ N, if n2 is odd, then n is odd. If we try creating a chain, it seems a bit
as though the natural direction is wrong: somehow we’d like to go from q back to p. What equivalent of an
implication allows us to do this?2

We can set this up similarly, assuming the negation of our consequent (i.e that n is even), and trying to
chain to the negation of our antecedent (i.e. that n2 is even).



CHAPTER 4. PROOFS 4-4

More proof structure

We continue to develop a structured format for presenting proofs in this course. The intention is to provide
you with an example of proof structure that can guide your future work either (a) writing proofs of your
own, or (b) evaluating proofs written by others. If you don’t see this formalization as simply a more careful,
precise and detailed version of what we’ve been doing all along, then you probably need to work more on
your understanding of logical statements.

We’ll be using certain explicit proof forms. The structure presented here isn’t meant to restrict you to
a particular way of writing and presenting proofs, but rather to provide a framework to decide whether a
given proof has all its working parts intact. Proofs you read elsewhere might not be laid out so clearly
and completely (much to the annoyance of some readers). But once you have learned our forms you can
start detecting them hidden in less formal proofs. (This is similar to why we use symbolic statements: they
underlie the myriad English phrasings used more commonly elsewhere.)

negation (contrapositive)

Earlier we described the search for a chain of implications of the form p(x) ⇒ r1(x) ⇒ r2(x) ⇒ · · ·, in
order to eventually prove ∀x ∈ D, p(x)⇒ q(x). To help form promising links in this chain, consider whether
implications such as ∀x ∈ D, t(x) ⇒ ¬rk(x). You recognize this as the contrapositive of ∀x ∈ D, rk(x) ⇒
¬t(x), so if you have rk(x) on your list, you can now add ¬t(x).

Symmetrically, we were looking (from the other end) for a chain of the form sn(x)⇒ · · · ⇒ s1(x)⇒ q(x).
It helps to consider implications of the form ∀x ∈ D,¬sk(x) ⇒ t(x), since this is the contrapositive of
∀x ∈ D,¬t(x)⇒ sk(x), adding another link to the chain.

bi-implication

Even when searching for an implication, adding bi-implication links is useful. Consider

∀x ∈ D, rk(x)⇔ rk+1(x)

This is the conjunction of two implications, so that if rk(x) ⇒ q(x) then rk+1(x) ⇒ q(x), which means
that rk+1 is a “dead end” if and only if rk is. This helps trim down the search tree by leading to fewer dead
ends.

Proving statements about sequences

Consider the statement:

Claim 1: ∃i ∈ N,∀j ∈ N, aj ≤ i⇒ j < i

and the sequence:

(A1) 0, 1, 4, 9, 16, 25, . . .

We’ll use the convention that sequences are indexed by natural numbers (recall that N = {0, 1, 2, . . . },
starting at zero just like how computers count) and ai is the element of the sequence indexed by i. Looking
at the pattern of (A1), we can write the closed form for ai.3

We should of course try to understand Claim 1, by putting it in natural English, picturing tables and
diagrams, thinking of code that could check it, trying it on various examples, etc. To understand whether it
is true or false for (A1) we should use this understanding, including tracing it. But let’s focus on the form
that a proof that Claim 1 is true could take. This may even help us understand Claim 1.

We have been justifying existentials with an example. So, our proof should start off something like:

Let i = . Then i ∈ N.
...



CHAPTER 4. PROOFS 4-5

We leave ourselves a blank to fill in: a specific value of i. We also need to make sure the i is in N. Often
it will be obvious and we will simply note it. If not, we’ll actually need to put in a proof that i is in N,
between the two sentences of our outline.

Next, we need to prove something for all j in N. (Actually, we see “∀j ∈ N, aj ≤ i⇒”, so we can restrict
ourselves to certain j’s in N. But for the moment let’s not be so smart).

As a syntactic convenience, we prove something for all j’s in Nby proving it for some unknown j in N. If
we’re careful to not assume anything about which j we have, our proof will handle all j’s.

By the way, here’s a tip for finding a proof of a universal: first try proving it for a specific concrete
example (e.g. your favourite number). You usually get some feel for the general case from it. What’s really
exciting is that sometimes you find that you never used the specific value! Then you simply erase the specific
value everywhere in your proof and replace it with the general variable!

Back to our proof outline:

Let i = . Then i ∈ N.
Let j ∈ N.

...

Notice this time we assume j is in N. I like to imagine ∃ and ∀ as part of a game:

• ∃x ∈ D: We pick x, but have to follow the rules and pick from D.

• ∀x ∈ D: Someone else will pick x, but we can assume they will follow the rules and pick from D. We
can’t make any assumptions here about which one from D they will pick.

Notice also the indentation, similar to what we do in code. We are following the structure of Claim 1:
we are proving that all j’s work for this i.

Continuing, the next level of Claim 1 is an implication. We’ve already seen how to deal with proving an
implication: it lets us restrict our attention to only certain j’s (in this case, only the ones with aj ≤ i). In
our proof, this lets us assume aj ≤ i.

We need only now to check that j < i (this is something left to prove).

Let i = . Then i ∈ N.
Let j ∈ N.

Suppose aj ≤ i.
...

Thus j < i.

We leave ourselves room (the
...) for a proof of j < i. Once we fill in a value of i, the proof of j < i may

use three things: that value of i, j ∈ N, and aj ≤ i.
After a little thought, we decide that setting i = 2 is a good idea, since then aj ≤ i is only true for j = 0

and j = 1, and these are smaller than 2. Now let’s fill in the rest of our proof, for (A1):

Let i = 2. Then i ∈ N.
Let j ∈ N.

Suppose aj ≤ i.
Then aj ≤ 2.
Looking at the sequence, this means j = 0 or j = 1.
So j < 2.
Thus j < i.

Thus aj ≤ i⇒ j < i (since assuming aj ≤ i leads to the conclusion j < i).
Since j is an arbitrary element of N, ∀j ∈ N, aj ≤ i⇒ j < i.

Since i ∈ N, ∃i ∈ N,∀j ∈ N, aj ≤ i⇒ j < i .



CHAPTER 4. PROOFS 4-6

Disproving statements

Consider now the statement:

Claim 2: ∃i ∈ N,∀j ∈ N, j > i⇒ aj = ai

and the sequence:

(A2) 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, ...

Let’s disprove it. Is disproof a whole new topic? Thankfully no. We simply prove the negation:

Claim 2
′
: ∀i ∈ N,∃j ∈ N, j > i ∧ aj 6= ai

Following the same strategy as we used before, we get as far as:

Let i ∈ N.
Let j = . Then j ∈ N.

...
Hence j > i ∧ aj 6= ai.

Since j ∈ N, ∃j ∈ N, j > i ∧ aj 6= ai.

Since i is an arbitrary element of N, ∀i ∈ N,∃j ∈ N, j > i ∧ aj 6= ai.

So we don’t pick i. But we get to pick j. And we are allowed to make j depend on i.
Using our game analogy: we get to pick j after someone else picks i. Unfortunately, while writing up the

proof we can’t wait for someone to pick j. So how does it help us? We get to describe a general strategy
for how we would pick a particular j if we knew which particular i. In other words, j can be described as
function of i.

In programming terms, i is in scope when we pick j: it has been declared and can be seen from where
we declare j. Notice that j is not in scope when we declare i: so when we picked i for Claim 1, we weren’t
allowed to use j. If we write a Java program that uses a variable before it’s declared and initialized, the
program doesn’t even compile. This is a major error. If you write a proof that does this, you will lose a lot
of marks (and it will probably be wrong).

Now we are left with proving j > i ∧ aj 6= ai (notice we wrote this at the bottom... we must have been
thinking ahead). What form does the proof of a conjunction take?4

Let i ∈ N.
Let j = . Then j ∈ N.

...
So j > i.
...
So aj 6= ai.
Hence j > i ∧ aj 6= ai.

Since j ∈ N, ∃j ∈ N, j > i ∧ aj 6= ai.

Since i is an arbitrary element of N, ∀i ∈ N,∃j ∈ N, j > i ∧ aj 6= ai.

To finish this off, we need to choose a value for j. If we choose wisely, the rest of the proof falls into
place.5 What elementary property of arithmetic will we require?6

An odd example revisited

Earlier we considered the implication “∀n ∈ N, n odd ⇒ n2 odd,” and its converse. We developed a direct
proof of the implication, and found that the same template could not be applied to prove the converse (even



CHAPTER 4. PROOFS 4-7

though the converse is true). This asymmetry shows that the search through the implication trees from p
to q does not necessarily follow the same path as from q to p, even when both paths exist and p⇔ q.

However, it seems aesthetically disturbing that when p⇔ q we don’t find a doubly-linked list of implica-
tions connecting them. One of your classmates came up with an approach that allows this symmetry (I’ve
modified it slightly)

Claim: ∀n ∈ N, n odd ⇔ n2 odd.

Proof:

Let n ∈ N.
Then
n2 is odd
is equivalent to
∃k ∈ N such that n2 = 2k + 1 (definition of odd natural numbers);
is equivalent to
n2 − 1 = 2k is even (definition of even integer),
is equivalent to
(n− 1)(n+ 1) is even (complete the square);
is equivalent to
(n− 1) is even or (n+ 1) is even (⇒ if prime number 2 divides a product, it divides some factor)
(⇐ definition of even);
is equivalent to
(n− 1) is even or (n+ 1)− 2 = (n− 1) is even (integer i is even if and only if i− 2 is even);
is equivalent to
(n− 1) is even (idempotent law);
is equivalent to
n− 1 = 2j for some integer j (definition of even)
is equivalent to
n = 2j + 1 for some integer j;
is equivalent to
n is odd

Thus n2 is odd ⇔ n is odd.

Since n is an arbitrary natural number,

∀n ∈ N, n2 odd ⇔ n odd.

Direct proof structure of the universal

Our general form of a direct proof of the implication ∀x ∈ D, p(x)⇒ q(x) is:

Let x ∈ D. (introduce variable x with scope indicated by indentation).
Suppose p(x). (indentation indicates where p(x) is assumed true)

... (fill in the proof of q(x))
q(x)

Hence p(x)⇒ q(x).

Since x is an arbitrary element of D, ∀x ∈ D, p(x)⇒ q(x).

Here’s a concrete example. Let R be the set of real numbers. Prove:

∀x ∈ R, x > 0⇒ 1/(x+ 2) < 3



CHAPTER 4. PROOFS 4-8

Structure the proof as above:

Let x ∈ R.
Suppose x > 0.

... (prove 1/(x+ 2) < 3)
Therefore 1/(x+ 2) < 3.

Hence x > 0 ⇒ 1/(x+ 2) < 3.

Since x is an arbitrary element of R, ∀x ∈ R, x > 0⇒ 1/(x+ 2) < 3.

Of course, you should unwrap the sub-proof that 1/(x+ 2) < 3:

Let x ∈ R.
Suppose x > 0.

so x+ 2 > 2 (since x > 0)
so 1/(x+ 2) < 1/2 (since x+ 2 > 2 and 2 > 0)
so 1/(x+ 2) < 3 (since 1/(x+ 2) < 1/2 and 1/2 < 3)
Therefore 1/(x+ 2) < 3.

Hence x > 0 ⇒ 1/(x+ 2) < 3.

Since x is an arbitrary element of R, ∀x ∈ R, x > 0⇒ 1/(x+ 2) < 3.

Is the converse true (what is the converse)?7

When no implication is stated, then we don’t assume (suppose) anything about x other than membership
in the domain. For example, ∀x ∈ D, p(x) has this proof structure:

Let x ∈ D.
... (prove q(x))
Hence q(x).

Since x is an arbitrary element of D, ∀x ∈ D, q(x).

Direct proof structure of the existential

Consider the example ∃x ∈ R, x3 + 2x2 + 3x+ 4 = 2. Since this is the existential, we need only find a single
example to show that the statement is true. We structure the proof as follows:

Let x = −1.
Then x ∈ R.
Also, x3 + 2x2 + 3x+ 4 = (−1)3 + 2(−1)2 + 3(−1) + 4 = −1 + 2− 3 + 4 = 2.

Since x ∈ R, ∃x ∈ R, x3 + 2x2 + 3x+ 4 = 2.

The general form for a direct proof of ∃x ∈ D, p(x) is:

Let x = [pick a specific value, unlike the universal]
Then x ∈ D. [this may be obvious from choice of x]
... (prove p(x))
Hence p(x).

Since x ∈ D, ∃x ∈ D, p(x).

Multiple quantifiers

Multiple quantifiers cause multiple nesting. Consider ∀x ∈ D,∃y ∈ D, p(x, y). The corresponding proof
structure is:



CHAPTER 4. PROOFS 4-9

Let x ∈ D.
Let yx = (select something that helps prove p(x, y))

...
Then yx ∈ D.
...
Also p(x, yx).

Since yx ∈ D, ∃y, p(x, y).

Since x is an arbitrary element of D, ∀x ∈ D,∃y ∈ D, p(x, y).



CHAPTER 4. PROOFS 4-10

Chapter 4 Notes

1Let n ∈ N such that n is odd.

Then, for some j ∈ N, n = 2j + 1 (definition of odd number).
So n2 = 4j2 + 2j + 1 (definition of squaring a number)
So n2 = 2(2j2 + j) + 1 (distributive law)
So there exists a natural number k = 2j2 + j such that n2 = 2k + 1. (N is closed under addition
and multiplication)
So n2 is odd.

Thus ∀n ∈ N, n odd ⇒ n2 odd.

2The contrapositive.

3We see that ai = i2.

4We need to prove both pieces of a conjunction.

5Try j = i+ 2.

6∀a ∈ N,∀b ∈ N, b > 0⇒ a+ b > a.

7∀x ∈ R, 1/(x + 2) < 3 ⇒ x > 0. False, for example let x = −4 (Alex’s suggestion), then 1/(−4 + 2) =
−1/2 < 3 but −4 6> 0. Indeed, every x < −2 is a counter-example.


