
CSC 466/2305 Assignment #4 Due: 20 March 2020

This assignment is due at the start of your lecture on Friday, 20 March 2020.

1. [10 marks: 5 marks for the “if part” and 5 marks for the “only if part”]

In Question 2 on last year’s midterm test1, the students were asked to prove a result
that is equivalent to the following theorem.

Theorem 1 Assume that f : D → R is continuously differentiable for all x ∈ D, where

the domain D of f is an open, convex subset of Rn.

Show that f is convex on D if and only if

f(y) ≥ f(x) +∇f(x)T (y − x)

for all x and y ∈ D.

You might have proven Theorem 1 as practice for this year’s midterm test. If not, you
can find it in many places on web.

For this assignment, prove the following result.

Theorem 2 Assume that f : D → R is continuously differentiable for all x ∈ D, where

the domain D of f is an open, convex subset of Rn.

Show that f is strictly convex on D if and only if

f(y) > f(x) +∇f(x)T (y − x)

for all x and y ∈ D for which x 6= y.

You can use Theorem 1 without proof in your proof of Theorem 2.

Note that you were told in both Theorems 1 and 2 to assume that ∇f(x) exists and
is continuous for all x ∈ D. If you cannot prove either the “if part” or the “only if
part” of Theorem 2 with this assumption alone, then you might choose to assume in
addition that ∇2f(x) exists and is continuous for all x ∈ D. However, if you make this
additional assumption in either part, then there will be a two mark deduction in each
part that you use this additional assumption. In particular, if you use this additional
assumption in both parts, then there will be a total of a four mark deduction for this
question.

In proving Theorem 1, you might use the following result: if ak ≥ a∗ for all k =
1, 2, 3, . . . and limk→∞ ak exists, then limk→∞ ak ≥ a∗. In proving Theorem 2, it is
tempting to assume that if ak > a∗ for all k = 1, 2, 3, . . . and limk→∞ ak exists, then
limk→∞ ak > a∗. However, this is not always true. For example, if ak = 2−k and a∗ = 0,
then ak > a∗ for all k = 1, 2, 3, . . . and limk→∞ ak exists, but limk→∞ ak = a∗ = 0. So,
it is not true that limk→∞ ak > a∗ in this case.

1You can find last year’s midterm test at http://www.cs.toronto.edu/~krj/courses/466-2305/

midterm.2018.pdf.
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2. [5 marks]

Question 3 on this year’s midterm test2 notes that when we were discussing in class
the BFGS update
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where

sk = xk+1 − xk

yk = ∇f(xk+1)−∇f(xk)

I mentioned that, if B0 is symmetric positive-definite and yT
k
sk > 0 for all k =

0, 1, 2, . . . , then Bk is symmetric positive-definite for all k = 0, 1, 2, . . .

Prove that this claim is true. That is, prove that, if B0 is symmetric positive-definite
and yT

k
sk > 0 for all k = 0, 1, 2, . . . , then Bk is symmetric positive-definite for all

k = 0, 1, 2, . . .

3. [5 marks]

Question 3 on this year’s midterm test goes on to give a condition that ensures that
yT
k
sk > 0.

Another set of conditions that ensures that yT
k
sk > 0 is the following.

(a) ∇f(xk) 6= 0 (i.e., you are not already at a critical point), and

(b) ∇2f(x) exists, is continuous and is symmetric positive-definite for all x ∈ D, where
D is an open, convex set containing both xk and xk+1.

Show that, if

• (a) and (b) above are true,

• Bk is symmetric positive-definite,

• xk+1 = xk + pk, where pk = −B−1

k
∇f(xk),

then yT
k
sk > 0, where yk and sk are given in Question 2 above.

In both Questions 2 and 3 above, assume that f : R
n → R. So, xk, xk+1, sk, ∇f(xk),

∇f(xk+1) and pk are all vectors in R
n and B0, Bk and Bk+1 are real n× n matrices.

2You can find this year’s midterm test at http://www.cs.toronto.edu/~krj/courses/466-2305/

midterm.2020.pdf.
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