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Answer ALL Questions

Do NOT turn this page over until you are TOLD to start.

Write your answers in the exam booklets provided.

Please fill-in ALL the information requested on the front cover of EACH exam booklet that
you use.

The exam consists of 7 pages, including this one. Make sure you have all 7 pages.

The exam consists of 5 questions. Answer all 5 questions.

The mark for each question is listed at the start of the question. Do the questions that you
feel are easiest first.

To pass this course, you need a total mark for the course of at least 50% and you must
receive at least 35% on this the Final Exam.

The exam was written with the intention that you would have ample time to complete it.
You will be rewarded for concise well-thought-out answers, rather than long rambling ones.
We seek quality rather than quantity.

Moreover, an answer that contains relevant and correct information as well as irrelevant or
incorrect information will be awarded fewer marks than one that contains the same relevant
and correct information only.

Write legibly. Unreadable answers are worthless.
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1. [10 marks; 2 marks for each part]

For each of the five statements below, say whether the statement is true or false and
briefly justify your answer.

(a) A problem that is highly sensitive to small changes in the problem data is poorly
conditioned.

(b) In a floating-point number system, the underflow level (i.e., UFL in your textbook)
is the largest positive floating-point number δ such that fl(1+δ) = 1, where fl(1+δ)
is the floating-point value you get when you compute 1 + δ in this floating-point
number system.

(c) Let A be an n × n nonsingular real matrix. If the condition number of A is very
large, then the determinant of A must be close to zero.

(d) For a given fixed level of accuracy, a super-linearly convergent iterative method al-
ways requires fewer iterations than a linearly convergent method to find a solution
to that level of accuracy.

(e) Given three pairs of points (x1, y1), (x2, y2), (x3, y3), where xi ∈ R for i = 1, 2, 3,
yi ∈ R for i = 1, 2, 3 and the xi are distinct, it is always possible to find a
polynomial p(x) of degree 2 or less such that p(xi) = yi for i = 1, 2, 3.
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2. [10 marks: 5 marks for each part]

In 250 BC, the Greek mathematician Archimedes estimated the number π as follows.
He drew a circle with diameter 1, and hence circumference π. Inside the circle he
inscribed a square. The perimeter of the square is smaller than the circumference of
the circle, and so it is a lower bound for π. Archimedes then considered an inscribed
octagon, 16-gon, 32-gon, etc., each time doubling the number of sides of the inscribed
polygon, thereby producing ever better estimates of π, with each estimate less than
π. He also performed a similar calculation using polygons that contain the circle (i.e.,
circumscribed polygons). This also produced a series of estimates converging to π,
but with each estimate greater than π. Using 96-sided inscribed and circumscribed
polygons, he was able to show that 223/71 < π < 22/7.

In this question, we will focus on the inscribed polygons. There is a recursive formula
for these estimates. Let pn be the perimeter of an inscribed polygon with 2n sides. It
is easy to show that p2 = 2

√
2 and it is possible (but a little harder) to show that

pn+1 = 2n

√

2

(

1 −
√

1 − (pn/2n)2

)

for n ≥ 2 (1)

As noted above, pn < π for all n ≥ 2 and pn → π as n → ∞.

You don’t have to prove the results above. Just take them as facts.

I used formula (1) above to compute pn and the error pn − π for n = 2, 3, . . . , 33
in MatLab using IEEE double-precision floating-point arithmetic. The results that I
obtained are listed below.

n pn pn − π
2 2.828427124746190 -3.1317e-01
3 3.061467458920719 -8.0125e-02
4 3.121445152258053 -2.0148e-02
5 3.136548490545941 -5.0442e-03
6 3.140331156954739 -1.2615e-03
7 3.141277250932757 -3.1540e-04
8 3.141513801144145 -7.8852e-05
9 3.141572940367883 -1.9713e-05

10 3.141587725279961 -4.9283e-06
11 3.141591421504635 -1.2321e-06
12 3.141592345611077 -3.0798e-07
13 3.141592576545004 -7.7045e-08
14 3.141592633463248 -2.0127e-08
15 3.141592654807589 1.2178e-09
16 3.141592645321215 -8.2686e-09
17 3.141592607375720 -4.6214e-08

n pn pn − π
18 3.141592910939673 2.5735e-07
19 3.141594125195191 1.4716e-06
20 3.141596553704820 3.9001e-06
21 3.141596553704820 3.9001e-06
22 3.141674265021758 8.1611e-05
23 3.141829681889202 2.3703e-04
24 3.142451272494134 8.5862e-04
25 3.142451272494134 8.5862e-04
26 3.162277660168380 2.0685e-02
27 3.162277660168380 2.0685e-02
28 3.464101615137754 3.2251e-01
29 4.000000000000000 8.5841e-01
30 0 -3.1416e+00
31 0 -3.1416e+00
32 0 -3.1416e+00
33 0 -3.1416e+00
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You can see from the table above that the computed pn > π for n = 15 and several
other values of n > 15. This violates the theoretical result that pn < π for all n ≥ 2.
Moreover, the error in the computed approximation pn to π grows in magnitude for
n > 15, rather than converging to zero, as it would if the calculation were done in
exact arithmetic. Furthermore, the computed pn = 0 for n = 30, 31, 32, 33 and is easy
to see from formula (1) that pn will be zero for all n > 33 as well, since, from formula
(1), it follows easily that, if pn = 0, then pn+1 = 0.

(a) Explain why formula (1) produces such poor approximations to π when computed
using IEEE double-precision floating-point arithmetic.

As part of your answer to this question, explain why the computed pn = 0 for
n ≥ 30.

In answering this question, you can use the numerical results from the table above.
For example, you can claim without proof that all computed pn ∈ [0, 5].

Note: although rounding error should play a role in your answer to this question,
there should be more to your explanation than just saying that there is rounding
error in the computation, since there is rounding error in almost all floating-point
computations, but most of them are accurate.

(b) Find a formula that is mathematically equivalent to formula (1), but does not
suffer from the extreme loss of accuracy that we see in the numerical results
above for formula (1).
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3. [20 marks: 5 marks for each part]

Consider the matrix

A =





−1 −2 1
4 4 −4
2 −1 −5





(a) Using partial pivoting, compute the LU factorization of A. That is, compute the
3 × 3 permutation matrix P , the 3 × 3 unit-lower-triangular matrix L and the
3 × 3 upper-triangular matrix U such that PA = LU .

Show all your calculations.

(b) Use the LU factorization of A computed in part (a) above to solve the linear
system Ax = b, where

b =





−2
4

−4





Show all your calculations.

(c) Suppose we change the (3,3) element of A from −5 to 1 to yield a new matrix

Â =





−1 −2 1
4 4 −4
2 −1 1





Note that all the elements of A and Â are equal except for the (3,3) element.

Find two vectors u and v such the Â = A− uvT . Thus, A and Â differ by a rank
1 update.

Note that the u and v that satisfy Â = A − uvT are not unique. To see this, let
ũ = αu and ṽ = v/α for any nonzero real number α. Then ũ and ṽ also satisfy
Â = A − ũṽT .

Suggestion: given this freedom in choosing u and v, choose u and v above so that
the calculations in part (d) below work out easily.

(d) Use the Sherman-Morrison formula

(A − uvT )−1 = A−1 +
A−1uvTA−1

1 − vT A−1u
(2)

to solve Âx̂ = b, where Â is the matrix in part (c) and b is the vector in part (b).

Do not compute any inverses explicitly in the Sherman-Morrison formula (2).
Instead, use the LU factorization from part (a) whenever you need to solve a
linear system with the matrix A.

Show all your calculations.
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4. [15 marks: 5 marks for each part]

Consider the function f(x) = 2 + cos(x) − ex for x ∈ R. Throughout this question,
assume that x is measured in radians when computing cos(x) or sin(x).

You might may find the following table of values helpful in answering the questions
below.

x 2 + cos(x) ex

0.50000 2.87758 1.64872
0.60000 2.82534 1.82212
0.70000 2.76484 2.01375
0.80000 2.69671 2.22554
0.90000 2.62161 2.45960
1.00000 2.54030 2.71828
1.10000 2.45360 3.00417
1.20000 2.36236 3.32012
1.30000 2.26750 3.66930
1.40000 2.16997 4.05520
1.50000 2.07074 4.48169

(a) Find an interval of length at most 0.1 that contains a root of f(x).

Justify your answer.

(b) How many roots does f(x) have?

Justify your answer.

(c) Explain how you can use Newton’s method to find a root of f(x). In particular,

• give Newton’s iteration to find a root of f(x), and

• give a value for a good initial guess x0 to start Newton’s iteration for f(x)
and explain why you think your initial guess is a good choice for x0.
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5. [5 marks]

Find a polynomial p(x) of degree 3 or less that satisfies

p(0) = 1

p(1) = 0

p(−1) = 2

p(2) = 5

Have a Happy Holiday

Total Marks = 60

Total Pages = 7
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