NUMERICAL SOFTWARE — CSC 2307

Assignment #3 Due 9 April 2010.

For this assignment, you are to modify the TEAPACK routine daquad.f to use the global error-control strategy
discussed in class rather than the local error-control strategy that daquad.f incorporates. You can find
daquad.f, the routines dquad.f and dglegq.f which it calls, and a simple driver program, example.f, in my
directory ~krj/quadrature on the CDF system. You should not have to modify either dquad.f or dglegq.f,
and you should not need to change the calls to these routines in your modified version of daquad.f.

One slightly tricky point is to correctly modify the extrapolation process at the end of the daquad.f
routine. Be careful with this, since, if you modify it incorrectly, your routine will appear to work, but its
results will be less accurate than they should be, particularly at more stringent tolerances.

There is also a program heap.f in ~krj/quadrature on the CDF system that you can use to implement
your heap. This was supplied by one of the students in the course a few years ago. You are welcome to use
it or write your own heap routines.

The main disadvantage of the global error-control strategy is that it uses a lot of storage. See if you can
think of modifications of the straightforward approach that maintain the logic of the scheme but reduce the
amount of storage required to implement it. Also look for (and comment on in your report) other ways that
you can easily improve the implementation of the global error-control strategy without unduly complicating
it.

When you examine the three TEAPACK routines, daquad.f, dquad.f and dglegq.f, you will notice that the
comments in the double-precision versions are inadequate. It’s typically the case that the single-precision
TEAPACK routines are moderately well-documented, but the comments have been stripped from the double-
precision versions, presumably to save disk space when this was an expensive resource!. (Oh the joys of
legacy code!)

You should not need to change the calling sequence of daquad.f, and, if you do not, then you need not
add the comments from aquad.f to daquad.f to explain the parameters. However, explain all the changes to
daquad.f that you do make. In addition, note that all the TEAPACK routines are written in capital letters.
Please use small letters only in your modifications of these routines so that I can easily see what you have
changed. Note that the default for ¢77 is to translate all capital letters to small letters (except in Hollerith
strings) before it compiles a program. So variables with the same name written in small or capital letters
are identical to ¢77. (If you use another compiler for this assignment, you should check that this is the case
for that compiler too. If it is not the default, you may be able to set a compiler option so that all capital
and all small letters are mapped to the same character set. If this is not the case, your programs may not
run correctly.)

In addition, you are to test and compare the original version of daquad.f and your modified versions
of it using both Pat Keast’s quadrature test program, discussed in his technical report The Evaluation of
One-Dimensional Quadrature Routines?, and the Performance Profile approach of Lyness and Kaganove3,
discussed in § 6.4 of Miller’s book. In both cases, use the two-point Gauss-Legendre rule as the basic
integration formula. This is the basic formula employed in both example.f and test.f. (Your modification
of daquad.f should work for all the other basic quadrature rules available in daquad.f as well, but you need
report the tests with the two-point Gauss-Legendre rule only.)

As shown in Miller’s book, you can present the results for the Performance Profiles quite clearly and
concisely as graphs. Try to present the results from Keast’s test program in an equally clear and concise
way.

1To encourage students to buy the Teapack Manual before it went out of print, the comments were also stripped from the
single-precision teapack routines in /u/csc/src/na/teapack on the CDF machines. Therefore, I have included the commented
single-precision versions of each of the three TEAPACK routines in ~krj/quadrature.

271l put a copy of this report, and other references for this assignment, in the directory ~krj/Assignment.3.References on
the CDF system.

3711 also leave a copy of this paper for you in the directory ~krj/Assignment.3.References on the CDF system.

Page 1 of 2 pages.



You may find that the results from the two approaches to testing lead to opposite conclusions. Therefore,
in discussing whether the local or global error-control strategy performs better, you should comment on the
appropriateness of the tests and in particular assess the appropriateness of the quality and efficiency ratings
in Keast’s program.

The program ~krj/quadrature/test.f contains Keast’s quadrature test program set-up to test daquad.f
with the two-point Gauss-Legendre rule. It should be very simple to change it to test your modified version
of daquad.f.

You are also to produce two Performance Profile graphs, each similar to Figure 6.16 on page 160 of
Miller’s book. In both cases, the integrals are over [0, 1]. For the first graph, use the integrand

01/(.0001 + (z — @)?)
arctan(100(1 — «)) — arctan(—100c)

fa(z) =

which is similar to the example discussed in Miller’s book except that it is normalized to integrate to 1 for all

a € [0,1]. Take « to be uniformly distributed on [0,1]. An easy way to do this is to set @ = rand(0.) in your

program, where rand is the random number generator in the file rand.f in my directory ~krj/quadrature.

There is also a little sample program there, example.rand.f, which illustrates how to use the rand function?.
For the second Performance Profile graph, use the integrand

1/ +a—2x)
fo(@) = 1 T 1/a)

which is similar to the example discussed in the paper Local Versus Global Strategies for Adaptive Quadrature
by Malcolm and Simpson®, except that this integrand also is normalized to integrate to 1 for all . In this
case, take a = exp(—15 - rand(0.)), giving exponentially distributed random numbers on [e !, 1], many of
which are “close” to zero.

In addition, plot the true error against the requested tolerance at the 80% and 95% confidence levels for
the local and global methods and the two performance-profile problems discussed above. This will give some
indication of the reliability of the routines.

Give me a hardcopy of your modified daquad.f routine, the test results you obtained from running it on
Keast’s test problems on the CDF system, your two Performance Profile graphs, your two requested error
versus tolerance graphs and a short (about 5 to 10 pages) evaluation of daquad.f and your modified version
of this routine. Discuss not only your test results but also any other aspects of the programs relevant to the
assessment of mathematical software.

Use tar or zip to email to me (krj@cs.utoronta.ca) your report and all the data and programs you used
for this assignment.

41 would like to use a better random number generator, but I couldn’t find one on the CDF system. Previously, we used
the Sun routine drand, which I think is much better, but that doesn’t seem to be on the CDF system. If you know of a better
random number generator that we can use on the CDF system, please let me know.

5711 also leave a copy of this paper for you in the directory ~krj/Assignment.3.References on the CDF system.

Page 2 of 2 pages.



