
MMF 2021F Assignment #5 Due: 13 December 2019.

This assignment is due on Friday, 13 December 2019. Put in in my mailbox in the MMF
lunch room and I’ll stop by late in the afternoon on Friday, 13 December 2019, to pick-up
the assignments. We finalize the details about this by email.

This assignment asks you to write some MatLab programs. Hand-in the programs and their
output as well as any written answers requested in the assignment. Your programs and
their output, as well as your written answers, will be marked. Your programs should be
“well-commented” and use good programming style, etc. When first learning to program
in MatLab, students often produce long, messy output, but you should be an experienced
programmer now. So, try to format the output from your programs so that it is easy for
your TA to read and to understand your results.

1. Consider the n× n symmetric, tridiagonal matrix (it could also be called a sparse or

banded matrix)

A =

−2 1 0 0 . . . 0 0 0 0
1 −2 1 0 . . . 0 0 0 0
0 1 −2 1 . . . 0 0 0 0
...

.
...

...
.

...
...

.
...

...
.

...
0 0 0 0 . . . 1 −2 1 0
0 0 0 0 . . . 0 1 −2 1
0 0 0 0 . . . 0 0 1 −2

for which

• Ai,i = −2, for i = 1, . . . , n,

• Ai,i−1 = 1, for i = 2, . . . , n,

• Ai,i+1 = 1, for i = 1, . . . , n− 1 and

• Ai,j = 0, otherwise.

There are functions in MatLab that take advantage of the sparsity structure of such
matrices. For example, to create a 100 × 100 matrix of the form A in sparse matrix
format in MatLab, you can use the commands

n = 100;
e = ones(n,1);
A = spdiags([e,−2 ∗ e, e], -1:1, n, n);

Page 1 of 6 pages.

Read “help spdiags” in MatLab for more information about spdiags.

Using this sparse matrix format, MatLab stores only the 3n− 2 non-zero elements in
the matrix A, rather than all n2 elements.

You can create a full matrix B, equivalent to A, using the MatLab command

B = full(A);

Similarly, you can create a matrix, C, identical to A in sparse matrix format using the
MatLab command

C = sparse(B);

Read “help full” and “help sparse” in MatLab for more information about these func-
tions.

In addition to saving storage, many operations are much faster if you perform them
with a matrix in sparse format, rather than full format. To see this, create a vector b
of length n (e.g., b = ones(n,1)) and time

(a) how long it takes MatLab to solve Ax = b using the MatLab command x = A\b,
and

(b) how long it takes MatLab to solve Bx = b using the MatLab command x = B\b,

where A is the sparse format version of the matrix A shown at the beginning of this
question and B = full(A) is the full format version of the matrix A discussed above.

Use the MatLab tic and toc functions (read “help tic” in MatLab) to do the timing.
For several different values of n, record the times that it takes to perform these solves.
For the solves with A, try to estimate parameters c1 and p1 such that the time taken
to solve Ax = b for a system of size n is approximately c1n

p1 . An easy way to do this is
to plot the time taken to solve Ax = b versus n on a log–log plot, since, if T (n) ≈ c1n

p1

is the time to solve the system of size n, then log(T (n)) ≈ log(c1) + p1 log(n). So, p1
will be the slope of the approximating line in the log–log plot and log(c1) will be its
y-intercept. Similarly, for the solves with B, try to estimate parameters c2 and p2 such
that the time taken to solve Bx = b for a system of size n is approximately c2n

p2 .

Note: n must be quite large for the solve Ax = b to take enough time for tic–toc to
time it accurately. Because solves with A are much faster than solves with B, you
might find it helpful to use larger n’s for A than for B. (When I ran this, I used 5
values for n between 50,000 and 150,000 for A and 5 values for n between 1,000 and
5,000 for B.) Also, run your program a few times. Computer clocks are not as accurate
as you might initially expect them to be.

Hand in your MatLab program that you used to solve this problem, your table of
times that MatLab took to solve Ax = b and Bx = b, your plots, and your estimates
of c1, c2, p1 and p2.

Page 2 of 6 pages.

2. For this question, you will solve the heat equation

∂u(t, x)

∂t
=

∂2u(t, x)

∂x2
(1)

for t ∈ [0, 1] and x ∈ [0, 1] with the boundary conditions

u(t, 0) = u(t, 1) = 0 for t ∈ [0, 1] (2)

and with the initial condition

u(0, x) = 4x(1− x) for x ∈ [0, 1] (3)

You will also solve the heat equation (1) with the boundary conditions (2) and the
initial condition

u(0, x) =

{

2x for x ∈ [0, 1
2
]

2(1− x) for x ∈ [1
2
, 1]

(4)

As noted in class, the exact solution of either of these problems (i.e. either (1)–(2)–(3)
or (1)–(2)–(4)) can be written as

u(t, x) =
∞
∑

k=1

ck e
−k2π2t sin(kπx) (5)

where

ck = 2
∫

1

0

u(0, x) sin(kπx) dx

For the initial condition (3),

ck =

{

0 for k even
32

k3π3 for k odd
(6)

while, for the initial condition (4),

ck =

{

0 for k even

(−1)
k+3

2
8

k2π2 for k odd
(7)

Thus, you can compute an accurate approximation to the solution of either of these
problems (i.e., either (1)–(2)–(3) or (1)–(2)–(4)) by choosing an appropriate value of
K and approximating the solution (5) by

u(t, x) =
K
∑

k=1

ck e
−k2π2t sin(kπx) (8)

You will need to choose K so that the approximation to u(t, x) given by (8) is signif-
icantly more accurate than the approximations generated by the numerical methods
described below. Because the series (5) converges faster with the coefficients (6) than

Page 3 of 6 pages.

with the coefficients (7), you may have to choose K larger when you are solving the
heat equation (1) with initial condition (4) than with initial condition (3).

The accurate approximation to the true solution computed by (8) is referred to as the
“exact” solution below (even though it is not really exact).

Hand in a brief discussion of how you chose K for the two problems, (1)–(2)–(3) and
(1)–(2)–(4), and why you believe the values you chose are appropriate for the “exact”
solutions.

(a) Use the Explicit Method to solve the heat equation (1) with the boundary condi-
tions (2) and the initial condition (3). Also use the Explicit Method to solve the
heat equation (1) with the boundary conditions (2) and the initial condition (4).
Let ρ = 0.3 and solve each problem several times with different values of δt and
δx satisfying δt/δx2 = ρ.

For each problem (1)–(2)–(3) and (1)–(2)–(4), plot the “exact” solution u(1, x)
versus x for x ∈ [0, 1] and the numerical solution approximating it for the different
stepsizes. On a separate graph, plot the associated errors (i.e., for each of the
different stepsizes you used, plot the “exact” solution u(1, x) minus the numerical
solution approximating it versus x for x ∈ [0, 1]). Consider if it might be better
to plot the log of the absolute value of the error rather than the error itself.

For both problems (i.e., (1)–(2)–(3) and (1)–(2)–(4)), try to estimate how the
error in the numerical solution at t = 1 decreases as δt and δx decrease, while
maintaining the relationship δt/δx2 = ρ.

Does the rate of convergence you observe agree with the rate of convergence for
the Explicit Method we discussed in class?

Hand in the program that you developed for this question, your plots, your analy-
sis of the rate of convergence of the numerical method observed from the numerical
results, and your discussion of how this observed rate of convergence agrees with
the theoretical rate of convergence of the Explicit Method.

(b) Use the Explicit Method again to solve the heat equation (1) with the boundary
conditions (2) and the initial condition (3). Also use the Explicit Method to solve
the heat equation (1) with the boundary conditions (2) and the initial condition
(4). However, in this case, let ρ = 2/3 and solve each problem several times with
different values of δt and δx satisfying δt/δx2 = ρ.

You should get a very bad solution in this case. What does this confirm about
the stability of the Explicit Method?

Hand in the program that you developed for this question, the numerical solutions
that it computed, and your answer to the question in the paragraph above.

(c) Use the Fully Implicit Method to solve the heat equation (1) with the boundary
conditions (2) and the initial condition (3). Also, use the Fully Implicit Method
to solve the heat equation (1) with the boundary conditions (2) and the initial

Page 4 of 6 pages.

condition (4). Let ρ = 1 and solve each problem several times with different
values of δt and δx satisfying δt/δx = ρ.

For each problem (1)–(2)–(3) and (1)–(2)–(4), plot the “exact” solution u(1, x)
versus x for x ∈ [0, 1] and the numerical solution approximating it for the different
stepsizes. On a separate graph, plot the associated errors (i.e., for each of the
different stepsizes you used, plot the “exact” solution u(1, x) minus the numerical
solution approximating it versus x for x ∈ [0, 1]). Consider if it might be better
to plot the log of the absolute value of the error rather than the error itself.

Try to estimate how the error in the numerical solution at t = 1 decreases as δt
and δx decrease.

Does the rate of convergence you observe agree with the rate of convergence for
the Fully Implicit Method we discussed in class?

Justify your answer.

What do these numerical results confirm about the stability of the Fully Implicit
Method?

Hand in the program that you developed for this question, your plots, your analy-
sis of the rate of convergence of the numerical method observed from the numerical
results, your discussion of how this observed rate of convergence agrees with the
theoretical rate of convergence of the Fully Implicit Method and your discussion
of the stability of the Fully Implicit Method.

(d) Use the Crank-Nicolson Method to solve the heat equation (1) with the boundary
conditions (2) and the initial condition (3). Also use the Crank-Nicolson Method
to solve the heat equation (1) with the boundary conditions (2) and the initial
condition (4).

Let ρ = 1 and solve the problem several times with different values of δt and δx
satisfying δt/δx = ρ.

For each problem (1)–(2)–(3) and (1)–(2)–(4), plot the “exact” solution u(1, x)
versus x for x ∈ [0, 1] and the numerical solution approximating it for the different
stepsizes. On a separate graph, plot the associated errors (i.e., for each of the
different stepsizes you used, plot the “exact” solution u(1, x) minus the numerical
solution approximating it versus x for x ∈ [0, 1]). Consider if it might be better
to plot the log of the absolute value of the error rather than the error itself.

For each problem, try to estimate how the error in the numerical solution at t = 1
decreases as δt and δx decrease.

Does the rate of convergence you observe agree with the rate of convergence for
the Crank-Nicolson Method we discussed in class?

Justify your answer.

What do these numerical results confirm about the stability of the Crank-Nicolson
Method?

Hand in the program that you developed for this question, your plots, your analy-
sis of the rate of convergence of the numerical method observed from the numerical

Page 5 of 6 pages.

results, your discussion of how this observed rate of convergence agrees with the
theoretical rate of convergence of the Crank-Nicolson Method and your discussion
of the stability of the Crank-Nicolson Method.

(e) Repeat question 2(d), but use Rannacher smoothing. That is, for each numerical
integration, take the first 5 time-steps with the Fully Implicit Method and then
switch to the Crank-Nicolson Method for the remaining time-steps.

For each problem (1)–(2)–(3) and (1)–(2)–(4), plot the “exact” solution u(1, x)
versus x for x ∈ [0, 1] and the numerical solution approximating it for the different
stepsizes. On a separate graph, plot the associated errors (i.e., for each of the
different stepsizes you used, plot the “exact” solution u(1, x) minus the numerical
solution approximating it versus x for x ∈ [0, 1]). Consider if it might be better
to plot the log of the absolute value of the error rather than the error itself.

For each problem, try to estimate how the error in the numerical solution at t = 1
decreases as δt and δx decrease.

Does the rate of convergence you observe agree with the rate of convergence for
the Crank-Nicolson Method we discussed in class?

Justify your answer.

Does Rannacher smoothing improve the numerical results for either or both of
the problems (1)–(2)–(3) and (1)–(2)–(4)?

Can you think of a theoretical explanation of your observations to the question
above?

Hand in the program that you developed for this question, your plots, your analy-
sis of the rate of convergence of the numerical method observed from the numerical
results, your discussion of how this observed rate of convergence agrees with the
theoretical rate of convergence of the Crank-Nicolson Method and your discussion
the effectiveness of Rannacher smoothing.

You can use the numerical solutions above to approximate the the hedging parameters
∂u(1, x)/∂x and ∂2u(1, x)/∂x2 by approximating these derivatives by finite differences.
I had planned to ask you to do this too in this assignment, but I dropped this part of
the assignment because the assignment seems to be quite big already. However, think
about how you could use the numerical solutions computed above to approximate the
hedging parameters ∂u(1, x)/∂x and ∂2u(1, x)/∂x2.

Page 6 of 6 pages.

