
CSC309 Week 8

Yiyang Wang

HTTPS://WWW.CS.TORONTO.EDU/~KIANOOSH/COURSES/CSC309H5/ 5 March, 2025

React Practice & Hooks & Server Actions

https://utoronto.zoom.us/j/2210147631
(Passcode: 123456)

https://www.cs.toronto.edu/~kianoosh/courses/csc309h5/

run demo

In your terminal :

git clone https://github.com/yiyangww/tut-309.git

cd tut-309

npm install

npm run dev

Today’s Lab

many codes demo … (don’t worry, they are simple!)

React and Hooks

custom hooks

server actions

React Quick Review and More…
● declarative approach: You define the UI, React updates it
● component-based: root component → App.jsx
● core concepts:

component: building blocks, functional component / class component

(capitalized naming convention)

React Quick Review and More…
● declarative approach: You define the UI, React updates it
● component-based: root component → App.jsx
● core concepts:

component: building blocks, functional component / class component

(capitalized naming convention)

props: properties passed from a parent component to a child
component

state: app’s dynamic data managed within a component

● one-way data flow: clear state management

JSX

● Next.js uses JSX just like React. (.js, .jsx, .ts, or .tsx)
● Benefits：

→ Enhanced Readability: Clearly represents the UI structure within the code,
making it more intuitive.

→ Seamless JavaScript Integration: Embeds dynamic data and expressions
effortlessly.

→ Component-Centric Approach: Simplifies the creation and reuse of modular
components

dynamic logic

event handler

Destructure Objects

Inline Styling

spread attributes

arrays and lists

Traditional DOM vs New DOM
old: manually find elements, more error-prone, non-reusable

● virtual DOM: React updates(automatically) changed DOM parts

Lift State Up Example (here I wrote with react vite)

Before I demo, a short explanation about …

main.jsx: starting point ; initializes react; loads App.jsx (strict mode?)

App.jsx : as a container; defines the core UI; renders child components

demo

parent

child

props.count is dynamically inserted into the JSX; parent pass count to child

Will this code work?

Will this code work?

No! It won’t update in UI!

→ sol: useState

Built In Hooks

hook name → demo component

● useState → Counter
● useReducer → NewCounter
● useEffect → Timer
● useContext (mentioned in week 7 lab)

more:

https://react.dev/reference/react/hooks

useState vs useReducer (demo)

initial state

better for less complex data

hard to maintain when state gets more complex

initial state + reducer function

better for more complex data

requires more prepwork

useEffect (demo)

componentDidMount, componentDidUpdate, componentWillUnmount

useEffect replace these lifecycle methods!

dependency array: empty/state variables/props(from parent)

side effects

useEffect is primarily used in React to handle side effects, which are operations that do
not directly affect UI rendering but are still necessary.

Common side effects include:

Fetching data (API requests) – Loading data from a server when a component mounts.

Subscribing to events – Listening to browser events, WebSocket connections, etc.

Manipulating the DOM – Updating document.title, setting focus on an element, etc.

Cleanup tasks – Removing event listeners, clearing timers, or canceling API requests
when a component unmounts.

Built In Hooks Cont’d

useState: Manages state within functional components.

useReducer: Manages complex state logic with actions and reducers.

useEffect: Handles side effects like data fetching and subscriptions.

useContext: Provides global state sharing without prop drilling.

Tidy up ur
code!

Custom Hooks

Code Reusability

Cleaner and More Readable Code

Separation of Concerns

Improves Testability

Custom Hooks (demo)

Custom Hooks

Sever Actions

1. Server-side execution

Functions marked with "use server" only run on the server and are not exposed to the client.

2. No need for separate API routes

Unlike traditional pages/api or app/api, you don’t need to manually create API endpoints.

3. Improved security

The client cannot see the implementation of the function, reducing exposure to security risks.

4. Simplified data mutations

Server Actions allow you to modify the database, update session data, or interact with external APIs without
requiring additional client-side fetch calls.

A very simple example (demo)

Counter in Server Actions

demo

some limitations

● No File Upload Support

Server Actions cannot handle file uploads directly.

You still need an API Route (pages/api) or an external service.

● No Direct Support for JWT Authentication

Server Actions do not automatically handle JWT authentication.

You'll need API Routes or middleware to verify tokens.

● No Middleware or Interceptors

Unlike API Routes, Server Actions do not support Next.js Middleware (middleware.ts).

You cannot intercept or modify requests globally.

http://www.youtube.com/watch?v=tWoo8i_VkvI

http://www.youtube.com/watch?v=p2AWYanIHkc

http://www.youtube.com/watch?v=tWoo8i_VkvI

http://www.youtube.com/watch?v=p2AWYanIHkc

Thank You!

