Abdullah S.

CSC309 Week 7

(React, Frontend Testing (Unit, E2E))

HTTPS://WWW.CS.TORONTO.EDU/~KIANOOSH/COURSES/CSC309H5/ 26 FEBRUARY, 2025

https://www.cs.toronto.edu/~kianoosh/courses/csc309h5/

Frontend

The cooler Daniel

Dane! -

React: High Level Review

Traditional React Traditional React
elefelgelelely elefelgelelely approach approach

Traditionally React

Visualizing React Apps

Think of a tree of “components”

Components can be used to create
other components (powerful)

. Header '

: Logm ‘l \
\\ II APl \\ \ ‘ Search 1 ' Search \ lLOC&(IOﬁ\
lUSEI’II]fO! I ISLOgIn 1o 1 | Menu 1 1 1]) 1)
\ [¢ v keys \ ' v data v data v data
A} / A\ / A\ ’ A\ / \ /’ \ / \ /
o "/ \\‘ "1 \\\ ”I \; ”/ \\~-_,1 \~~-"l \\‘-”I
I” ‘\\
/ \‘
1/
ISubmenu’-
\ ’

Visualizing React Apps

1 -

2
3 .
4

Recall: State variables

What are they? OH, SO YOU LIKE REACT?
/- y .

React state variables are variables used within a React
component to hold data that can change over time.

When these variables are updated, React re-renders the
component to reflect the new data. In function components,
state is typically managed using the useState hook, which ;
provides a current state value and a function to update it. - Y. '
TELL MEWHAT S |
TRIGGERS'A'RE-RENDER

React: Data Flow

Data

React Data flow

eact: Local vs Global State

State needed only by one or few components - State that many components might need
State that is defined in a component and only - Shared state that is accessible to every

that component and child components have component in the entire application

access to it (by passing via props)

We should always start with local state @ EONLE = (@) Redux

Gderny f‘.d!—qm'unll Q javwscript jI Udertry Busivess troctor My lesehieg E r
Global state
4 Jonas Schmedtmann
Shopping Cart :
2 Courses in Cart

Node.js, Express, MongoDB & More: The Complete G 11w <12009
Bootcamp 2022 Yo o 4490
Gy Moras Gehmecbrarn

ann, Web Developer, Desigres, sl Trauts

Instructor dashboard

Local state

Checkout Notifications c

The Complete JavaScript Course 2022: From Zero to e inrve 12009
Expert! Gave Mor Later €A499 Measage
By Joras Schmedbmann, Web Developer, Desigrer, and Teacher

. ’ Mose 10 Watdint
Dewlrubur wm SE22 2, 1 elige REP RSt
S ' AL Lo

State management can get complex and is

ESSENTIAL to good frontend engineering

State management: level 1

When it comes to managing state, you have a bunch of options...
For starters, you can use prop drilling..

i.e define the state in a higher component and pass it down to the
components that need it.

Obviously, not the cleanest approach; also hard to debug and reason
with.

State management: level 2

To level it up, you can use the ‘'useContext” hook / APl that comes with
React.

This will let you define a global state where you can store your values

prop drilling context API

State management: level 2

Can you see the problem with context? Think of the data flow...

-

prop drilling context API

State manage: Level 3

Commonly used at the enterprise level (for good reasons)

_ defines
contains

triggers
updates 99

sent to

,_[Dispatch]‘\

Event Handler

L)

J\

Ul

%
\V)
Store
— 1V
4)

Reducer

.

\ Deposit $10 SO
Withdraw S10

Redux design pattern for state management

(React Redux Toolkit)

State manage: alternatives

Though Redux is great, and though it is fairly easier to implement
nowadays with the help of libraries such as Redux Toolkit,

it may not be worthwhile for projects at a smaller scale...

You have some alternative tools that can provide you efficient state
management with less complexity:

- Zustand, Recoil, Nanostores, and many more.

| recommend Zustand

Client vs Server State

We differentiated between global and local state... but there is another important distinction.

Client state: managed entirely on the Server state: Resides on a remote server
client (browser) and typically stored in (or backend) and is accessed by your
memory within React components. This React app via API calls. This state

includes data that affects the Ul and is represents data that is shared across users
transient or local to a component. and maintained centrally (like a database).
Ex: Form inputs, modal visibility, toggles, Ex: User profiles, posts, comments, or any
local caching of user interactions. data fetched from an API.

Challenges: Synchronization, Caching and
invalidation, error handling

This can get even more complex!

useState

react state hook

useReducer with context api

Use a fetching
library like Apollo,
react-query or
swr and react
hooks

Use Redux (or a
different state
management
library of your

choice).

AS you can see, state management can get

complex

Thinking about your state design earlier for

vour application can help with development!

React Ecosystem

styled
111111

Testing...

Writing unit tests

Pros: Cons:
-they'll improve the -i don't wanna
quality of my code

-it'll take like

10 mins max

-literally everyone
says that | should

CONCLUSION: 1 will not
write unit tests

A ton of libraries available..

Playwright

The testing pyramid

End-t d
sssss
Integra Test
Unit Tests

The Testing Pyramid

%2
\ e

\
{ s Gtk
- '
! ;
l\ \.... ’l
EVIL BUG #2 ™ 7 :
cheek it/ ONIT TESTING
‘ -
/ﬁ’ : works \
i \
' '
\ PROTECTION FROM BUGS .-~
\\ T —————— ‘,-_-
\ SIS X "
\\\ e "l

methodpoet.com

End to End (E2E) tests

How Playwright works

' Pages run tests inside Assertions are made
Browsers and BrowserContexts Actions are performed on the results of actions
' X e N —C T —
oo e abce v/ Page loads

A, ...]) cba) X Buttons work
“ " Headers
present

\ /

T

/> Confirm the problem
r @) _] is fixed by re-running tests g
Developer writes tests k Ak
=
To: Front-end e —
developer
Playwright notifies the developer Traces record the results
if there's a problem they need to fix for debugging

Question 2: Web in the Nineties! [24 marks]

Exercise

Analyze the following web page and answer the questions based on its behavior. Assume the code works as intended - do not look for syntax or

other potential errors.

<!DOCTYPE html>
t) r]' :) <htm1>
Remember this: Heatls
<title>Midterm Example</title>
<script>
var greetingText = "Hello from JavaScript!";

function showGreeting() {
document.getElementById("greeting").innerText = greetingText;

}

var count = 0;
function incrementCounter() {
count++;
document.getElementById('"counter").innerText = count;
b
</script>
</head>
<body>
<main>
<section>
<p id="greeting">Click the button to see a greeting.</p>
<button id="greetingButton" onclick="showGreeting()">
Show Greeting
</button>
</section>

<section>
<p>Counter Value: 0</p>
<button id="counterButton" onclick="incrementCounter()">

Increment Counter

</button>

</section>

</main>
</body>
</html>

Exercise

Follow along with me

We will build the same application in React
and write some unit tests...

Link to the midterm

https://www.cs.toronto.edu/~kianoosh/courses/csc309h5/handouts/?source=midterm

serious face: on

Challenge

Now, challenge for you.
Implement part d of the question
And write a unit test for it.

Once done, email me your submission for tracking

purposes:
abdullah.shahid@mail.utoronto.ca

CSC309 Week 7

26 FEBRUARY, 2025

