
CSC309 Week 7
React, Frontend Testing (Unit, E2E)

Abdullah S.

HTTPS://WWW.CS.TORONTO.EDU/~KIANOOSH/COURSES/CSC309H5/ 26 FEBRUARY, 2025

https://www.cs.toronto.edu/~kianoosh/courses/csc309h5/


React 



React: High Level Review

Traditionally React 



Visualizing React Apps
Think of a tree of “components”

Components can be used to create
other components (powerful)



Visualizing React Apps



Recall: State variables
What are they?

React state variables are variables used within a React 
component to hold data that can change over time.

When these variables are updated, React re-renders the 
component to reflect the new data. In function components, 
state is typically managed using the useState hook, which 
provides a current state value and a function to update it.



React: Data Flow



React: Local vs Global State



State management can get complex and is 
ESSENTIAL to good frontend engineering



State management: level 1

When it comes to managing state, you have a bunch of options…

For starters, you can use prop drilling.. 

i.e define the state in a higher component and pass it down to the 
components that need it. 

Obviously, not the cleanest approach; also hard to debug and reason 
with. 



State management: level 2

To level it up, you can use the `useContext` hook / API that comes with 
React. 

This will let you define a global state where you can store your values



State management: level 2

Can you see the problem with context? Think of the data flow…



State manage: Level 3

Commonly used at the enterprise level (for good reasons)

Redux design pattern for state management
(React Redux Toolkit)



State manage: alternatives

Though Redux is great, and though it is fairly easier to implement 
nowadays with the help of libraries such as Redux Toolkit, 

it may not be worthwhile for projects at a smaller scale…

You have some alternative tools that can provide you efficient state 
management with less complexity:

- Zustand, Recoil, Nanostores, and many more. 

I recommend Zustand



Client vs Server State
We differentiated between global and local state… but there is another important distinction. 

Server state: Resides on a remote server 
(or backend) and is accessed by your 
React app via API calls. This state 
represents data that is shared across users 
and maintained centrally (like a database).

Ex: User profiles, posts, comments, or any 
data fetched from an API.

Challenges: Synchronization, Caching and 
invalidation, error handling

This can get even more complex!

Client state: managed entirely on the 
client (browser) and typically stored in 
memory within React components. This 
includes data that affects the UI and is 
transient or local to a component.

Ex: Form inputs, modal visibility, toggles, 
local caching of user interactions.





As you can see, state management can get 
complex

Thinking about your state design earlier for 
your application can help with development! 



React Ecosystem 



Testing…



A ton of libraries available..



The testing pyramid



Unit testing



End to End (E2E) tests



Exercise
Remember this?



Exercise
Follow along with me

We will build the same application in React
and write some unit tests…

Link to the midterm

https://www.cs.toronto.edu/~kianoosh/courses/csc309h5/handouts/?source=midterm


Challenge
Now, challenge for you.

Implement part d of the question 

And write a unit test for it.

Once done, email me your submission for tracking 
purposes:
abdullah.shahid@mail.utoronto.ca



Thank You

ABDULLAH

26 FEBRUARY, 2025CSC309 Week 7


