
CSC309 Week 5
ASYNC & MIDTERM REVIEW

Abdullah S.

HTTPS://WWW.CS.TORONTO.EDU/~KIANOOSH/COURSES/CSC309H5/ 6 FEBRUARY, 2025

https://www.cs.toronto.edu/~kianoosh/courses/csc309h5/


Please join the 
Zoom for polls

HTTPS://WWW.CS.TORONTO.EDU/~KIANOOSH/COURSES/CSC309H5/

Meeting Code:
555 377 5792

Password:
n/a

https://www.cs.toronto.edu/~kianoosh/courses/csc309h5/


Breakdown
MIDTERM REVIEW

ASYNC

Welcome to fifth tutorial of CSC309!

Review + Deep dive into JS 

Runtime Model (15 minutes)

“Exam jam” via polling (25 minutes)

Q/A Ask questions! (5-10 minutes)



Async Programming in JS



Key point(s)
Javascript is a single threaded language.

● Libraries like NodeJS may provide additional 
libraries to provide real multithreaded 
capabilities but JS itself is single-threaded. 

● So how does JS provide concurrency via a 
single thread?
○ …. the event loop



Async Programming in JS
● A lot of the work an API or a web application does is I/O bound. For example:

○ Waiting for user requests
○ Fetching data from a database 
○ Writing logs to disk
○ Requesting data from other microservices

● So… there is a lot of waiting involved, if we were using a synchronous programming 
model, then we would be waiting for these task to complete.
○ And the entire app will have to wait for that…
○ Instead, we use the event loop to “wait” for events and come back to them when 

they’re finished. Meanwhile, our app can work on other tasks. 



JavaScript Runtime Model
● Components:

○ Call Stack
○ Event Loop
○ Microtask Queue 
○ Macrotask Queue



JavaScript Runtime Model: Call Stack
● The Call Stack is a LIFO data structure that keeps track of function calls in 

JavaScript

● It manages execution context for synchronous code

● When a function is called, it is pushed onto the stack

● When a function returns, it is popped off the stack.



Call Stack: Live Demo

https://www.jsv9000.app/

https://www.jsv9000.app/


JavaScript Runtime Model: Event Loop
● JavaScript uses an event loop to manage asynchronous tasks.

● Tasks are handled in two separate queues:
○ Microtask Queue (Higher Priority)
○ Macrotask Queue (Lower Priority)

● Why should I care? 
○ Understanding the difference helps optimize performance and give 

better insight into how your code works! 



Microtask Queue
● Executes immediately after the current 

synchronous code.

● Higher priority than macrotasks.

● Runs before any macrotask is executed.

● Examples: Promises(.then(), .catch(), …), 
async/await, queueMicrotask()



Macrotask Queue
● Runs after the microtask queue is empty.

● Scheduled for the next event loop cycle.

● Used for lower-priority async operations.

● Examples: setTimeout(), setInterval(), fetch()



Summary: Microtasks vs Macrotasks
● Microtasks execute before macrotasks in the same event loop iteration.

● Microtasks are for promise resolutions and quick follow-up tasks.

● Macrotasks are for timers, I/O, and lower-priority async tasks.

● Understanding this helps in optimizing JavaScript performance.



Execution Order Visualized

Credit: @saravanaeswari22 (Medium)



Any questions?



Midterm Review (Polls)



Thank You

ABDULLAH

5 FEBRUARY, 2025CSC309 Week 5


