
CSC309 Week 4
Databases, Prisma and Memes

DAVID LIN

HTTPS://WWW.CS.TORONTO.EDU/~KIANOOSH/COURSES/CSC309H5/ 29 JANUARY, 2025

https://www.cs.toronto.edu/~kianoosh/courses/csc309h5/

https://utoronto.zoom.us/j/8
7457857764 (Passcode:

655949)

DAVID LIN

HTTPS://WWW.CS.TORONTO.EDU/~KIANOOSH/COURSES/CSC309H5/ 20 JANUARY, 2025

Meeting Code:

87457857764
Password:655949

https://www.cs.toronto.edu/~kianoosh/courses/csc309h5/

Breakdown ORMs

Databases

Welcome to 4th tutorial of CSC309!

Design

Full Stack Before

Full Stack Now

Databases!
● One of the most important factor in

full-stack development
● Know how to use databases

correctly and the right database to
use

What is a Database
● A database is an organized collection of data stored electronically.
● Purpose: Enables data storage, retrieval, and management.

What is a DBMS
● Database Management System
● Provides an interface for querying and

modifying data
● Ensures data integrity and security
● Manages concurrent access by multiple

users
● Handles backups, recovery, and logging

Independence
● Physical independence: DBMS can

change how it stores things like
compressions, but logical schema remains
unchanged

● Logical independence: Allowing changes
to the logical schema without needing to
change the application layer above it

Relational Model
● Relations: tables
● Tuples: rows
● Attributes: columns
● Achieves both data and physical

independence

SQL vs. NoSQL
SQL
● Structured, relational schema (e.g., MySQL,

PostgreSQL)
● ACID compliance, strong consistency
● Use cases: Financial systems, inventory
NoSQL
● Not only SQL
● Flexible, schema-less (e.g.,

MongoDB, Cassandra)
● Horizontal scalability, eventual

consistency
● Use cases: Real-time analytics,

IoT

SQL vs. NoSQL

MongoDB

SQL Database Scalability
Vertical Scaling
● Increasing the power of a single server

(e.g., more CPU, RAM)
● Limitations: Hardware limits, cost

Horizontal Scaling
● Adding more servers to distribute the load
● Benefits: Better for large-scale applications,

fault tolerance

Scalability Challenges
● Consistency vs Availability (CAP Theorem)

NewSQL
● https://www.youtube.com/watch?v=PheGC

Ru48EU
● People are trying to combine the scalability

of NoSQL with the consistency of traditional
databases

● Ex: CockroachDB, a distributed SQL
database but it’s a KV store inside

https://www.youtube.com/watch?v=PheGCRu48EU
https://www.youtube.com/watch?v=PheGCRu48EU

Distributed SQL Query Engine
● Big data processing
● Use SQL to query large datasets stored in

distributed file systems

ORMs

Recap: ORMs
● Object–relational mapping
● Provide an abstraction layer over the

database, allowing developers to interact
with the database using objects instead of
raw SQL queries

ORM Benefit
● Simplifies database interactions
● Reduces SQL injection risks
● Enables object-oriented programming with

databases
● Clean architecture!!

ORM Drawbacks
● Performance overhead for complex queries

○ Sometimes when you have a lot of joins,
it’s terrible

● Learning curve for ORM-specific syntax
● Missing functionalities

○ Prisma has trouble with polymorphism

ORM in Node.js
● Prisma
● Sequelize
● TypeORM
● Prisma is not only for Next.js!

Prisma
● Prisma Client

○ Auto-generated database client that's
tailored to the database schema

● Prisma Schema
● Prisma Migrate
● Prisma Studio

Prisma Client

Recap: Migration
● Keeps schema changes synchronized

across development, staging, and
production environments

● Allows reverting changes if something goes
wrong

● NEVER EDIT THE MIGRATION FILES

Migration Problems IRL
● Migration might be easy for small amount of

data
● But when you have millions of rows, ALTER

TABLE is hard
● NULLS!
● Interesting Technique: Migration in one PR,

code change in the following PR
● https://www.rainforestqa.com/blog/2014-06-

27-zero-downtime-database-migrations

https://www.rainforestqa.com/blog/2014-06-27-zero-downtime-database-migrations
https://www.rainforestqa.com/blog/2014-06-27-zero-downtime-database-migrations

Prisma Migration
● npx prisma migrate dev
● npx prisma migrate deploy

○ Only applies existing migrations
○ Doesn’t generate new ones

● Example Migration Workflow
○ Update schema.prisma
○ Run prisma migrate dev
○ Apply changes to the database

Dev vs. Deploy
● In production, schema changes should be

pre-tested and reviewed before deployment
● Migrate dev relies on an interactive and

iterative workflow to guide the migration
process
○ Not suitable for pipeline environment

● Inconsistencies

Prisma Studio
● Interface for examining local

data
● Confirm if the application is

working correctly
● npx prisma studio

Embrace Beauty of SQL
● You can run raw SQL in Prisma
● const result = await

prisma.$queryRaw`SELECT * FROM
"User" WHERE id = ${userId}`;

Prisma Extensions
● New feature for Prisma
● Add functionality to your

models, result objects, and
queries, or to add client-level
methods

● Use cases
○ Computed fields
○ Soft delete
○ Limiting result batch size

Designing

ER Diagram

One-to-One
● Example: One person has one resume (ideally), and the resume can only be

used by one person

One-to-Many
● Example: One student can have multiple internships

Many-to-many
● Example: One intern can work on multiple projects, and a project can have

multiple interns

Normalizations
● Organizing database tables and

relationships to minimize redundancy
● Improve data integrity
● Example

○ Like count for a post
○ Denormalized: Save as integer
○ Normalized: COUNT like table

Indexing
● An index is a data structure (B-tree, hash

maps) that improves the speed of data
retrieval operations on a database table

● Similar to the index in a book
● Reduces the time required to locate rows
● Drawbacks

○ Storage Overhead: Indexes require
additional space

○ Inserts, updates, and deletes can be
slower because indexes must be updated

● Index only frequently used columns

Example
● https://www.prisma.io/docs/orm/prisma-schema/data-model/indexes
● Automatically creates unique indexes for fields marked with the @unique

attribute or the @id attribute
● You can create a composite index using the @@index or @@unique attribute

in the model block.
● Full Text Index: full-text search in databases like MySQL or PostgreSQL

@@fulltext

https://www.prisma.io/docs/orm/prisma-schema/data-model/indexes

Transactions
● Interview Question
● Atomicity
● Database transaction refers to a sequence

of read/write operations that are
guaranteed to either succeed or fail as a
whole

● If any step fails, transaction is rolled back

Example
● Placing an order in an online store

○ Deduct item quantity from inventory
○ Create an order record
○ Record payment details

● If one operation fails
○ Inventory is reduced
○ No order or payment records are created

● Database is inconsistent

Prisma Transactions

Thank You

DAVID LIN

29 JANUARY, 2025CSC309 Week 4

