
CSC309 Week 3
APIs, Next.js, Clean Architecture and Memes

DAVID LIN

HTTPS://WWW.CS.TORONTO.EDU/~KIANOOSH/COURSES/CSC309H5/ 21 JANUARY, 2025

https://www.cs.toronto.edu/~kianoosh/courses/csc309h5/

Breakdown Next.js,

APIs

Welcome to third tutorial of CSC309!

Clean Architecture

Case Study

What are APIs
● API: Application Programming Interface, duh
● A defined set of rules and specifications that allows one piece of code to

interact with another
● Acts as a contract between different software components about how they

can interact

Real Life Example
Think of it like a restaurant's menu and ordering
system:
● The menu is the "interface" - it tells you what

you can order (available operations)
● You don't need to know how the kitchen works

(implementation is hidden)
● You have a standard way to request food (place

order with waiter)
● The kitchen provides a predictable response

(your food)

A Brief History of APIs

REST
● Representational State Transfer, duh
● Common interview question
● Everything in REST revolves around

"resources" (e.g., a user, a file, a product).
Each resource is uniquely identified by a URL.

REST
● Instead of directly accessing a resource,

systems send back and forth representations of
it (e.g., JSON).

REST
● REST uses a small set of standardized HTTP

methods (like GET, POST, PUT, DELETE) to
perform actions on these resources.

● REAL INTERVIEW QUESTION: PUT VS
PATCH

REST
● Each interaction is independent. The server

doesn’t remember what the client did
previously—everything needed for a request is
included in that request.

(Unfortunately A Stateful Image)

REST vs GraphQL
● REST

○ Multiple endpoints, each focusing on a
resource

○ Easy to cache
○ Straightforward and widely adopted

● GraphQL
○ Single endpoint, usually POST /graphql
○ Flexible queries
○ Increased complexity on server-side setup

Demo
● REST API

○ https://github.com/r-spacex/SpaceX-API/bl
ob/master/docs/README.md

● GraphQL
○ https://studio.apollographql.com/public/Sp

aceX-pxxbxen/variant/current/explorer

https://github.com/r-spacex/SpaceX-API/blob/master/docs/README.md
https://github.com/r-spacex/SpaceX-API/blob/master/docs/README.md
https://studio.apollographql.com/public/SpaceX-pxxbxen/variant/current/explorer
https://studio.apollographql.com/public/SpaceX-pxxbxen/variant/current/explorer

Next.js
and its Family

JS Naming Be Like…

Node.js
● A runtime environment for executing JavaScript

outside the browser
● Built on Google’s V8 JavaScript engine
● Features:

○ Non-blocking, event-driven architecture
○ Package management through npm (Node

Package Manager)
● Example

○ $ node # Start Node.js console
○ $ node <filename>.js # Execute a JavaScript

file

NPM
● npm (Node Package Manager) is used to manage

libraries and tools for Node.js projects
● npm install <package-name> to add a package to

package.json
● Workflow

○ Updating: Push package.json
○ Cloned Project: Run npm install to install all

dependencies in package.json to
node_modules

NPM Files
● node_modules

○ Directory where all installed packages and their
dependencies are stored

● package.json
○ Contains metadata about the project, such as

project name, version, and description
● package-lock.json

○ Ensures consistent installs by locking exact
versions of dependencies

● NEVER PUSH NODE_MODULES

Next.js
● A framework built on top of React and Node.js

for server-side rendering and easy routing
● Gives you sweet features like SSR

(Server-Side Rendering) and static site
generation

Next.js & Node.js
1. User Request → HTTP Request sent to the server
2. Next.js→ Determines how to handle the request

a. Static Site Generation (SSG)
b. Server-Side Rendering (SSR)
c. API Routes

3. Node.js Runtime → Used under the hood by Next.js to execute server-side
JavaScript

4. Response to User → Sends formatted response

Request Handling - Headers
● Accessing Request Headers

○ Headers provide metadata about the request.
● Common use cases

○ Content type validation
○ Authorization tokens

Request Handling - Params
● What are Query Parameters?

○ Parameters passed in the URL after ?
○ Example: /api/items?search=book&page=2

Request Handling - Dynamic
● From Next.js Documentation
● A Dynamic Segment can be created by

wrapping a folder's name in square brackets:
[folderName]. For example, [id] or [slug]

● Catch-all by adding an ellipsis inside the
brackets [...folderName]
○ Example: app/shop/[...slug]/page.js will

match /shop/clothes, but also
/shop/clothes/tops,
/shop/clothes/tops/t-shirts, and so on.

Clean Architecture
in Next.js

Clean Architecture in Next.js
● Separation of concerns for scalable and

maintainable code
● Decoupling business logic from frameworks

and tools
● Layers: Entities, Service/Use Cases,

Controllers, Frameworks & Drivers
● All the source code dependencies should point

inwards

Entities
● Entities represent core business objects and validation logic
● Custom errors for better error handling

Service Layer

● Encapsulate business logic
● Interact with domain entities
● Data transformation and validation before

interacting with the domain
● Reusable across controllers

● Handle HTTP requests, headers, or responses
● Include plain database queries

○ Use ORM such as Prisma or repository instead, don’t
worry about this for now

● Framework-specific dependencies like NextResponse

Service Layer Example

Controller Layer

● Adaptor between services and frameworks (e.g.,
Next.js routes)

● Handle HTTP-specific tasks such as
○ Parsing incoming requests
○ Formatting outgoing responses
○ Managing headers and status codes

● Call the service layer to execute business logic

● Contain any business logic
● Query the database
● Include reusable workflows—these belong in the

service layer

Controller Layer Example

Framework/Infra
● It should only implement the technical details of

interacting with external systems
● Business rules should remain in the Service Layer or

Domain Layer
● The Infrastructure Layer provides services or

repositories that the Service Layer consumes, not
the other way around

● The Service Layer does not know the implementation
details. Instead, the dependency is passed to it

Request Flow in Next.js

So GPT What Does It Mean?

Testability
● Independent Layers: You can test each layer

(like business logic or database access)
separately.

● Mocks and Stubs: Easily replace real
dependencies (e.g., databases) with fake
ones in tests.

● Isolated Logic: Business rules don’t depend
on external tools, so they’re easy to test.

Thank You

DAVID LIN

15 JANUARY, 2025CSC309 Week 3

Please join the
Zoom for polls

DAVID LIN

HTTPS://WWW.CS.TORONTO.EDU/~KIANOOSH/COURSES/CSC309H5/ 15 JANUARY, 2025

Meeting Code: Password:

https://www.cs.toronto.edu/~kianoosh/courses/csc309h5/

